
TIMELY: RTT-based Congestion Control
for the Datacenter

Authors: Radhika Mittal(UC Berkeley), Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi(Microsoft), Amin Vahdat, Yaogong Wang, David Wetherall, David Zats

Presenters: Buting Ma, Xinghao Li

Outline

1. Multi-bit RTT signals measured with NIC hardware are strongly correlated with
network queueing.

2. Transport Informed by MEasurement of LatencY (TIMELY): an RTT-based
congestion control scheme.

3. Evaluation of TIMELY with an OS-bypass messaging implementation using
hundreds of machines on a Clos network topology.

RTT can be measured accurately
IMPORTANT: Network Interface Controller (NIC, hardware) support

1. Time is logged by hardware; 2. ACK is done by hardware

Advantages of using RTT
Need no support from switch (*but support from NIC)

RTT directly reflects latency, but Explicit Congestion Notification (ECN) only marks queue length threshold

Accumulate information about end to end path, ECN only reflects a single switch

RTT contains multiple bits information (fine grained, gradient possible), ECN is only binary

*RTT not suitable for large area network due to paths with various length;

In datacenter, all paths have propagation delays, and in Clos topology, same paths have same
length, a measurable constant

RTT closely related to queue occupancy

Strong correlation between RTT and
queue length

Only weak correlation between ECN
marks and RTT

Problem with reverse path congestion
confuse reverse path congestion experienced by ACKs with forward path
congestion experienced by data packets.

Solution: send ACKs with
higher priority

(No need for more
complicated methods)

TIMELY: Transport Informed by MEasurement of LatencY

1) RTT measurement to monitor the network for congestion;

2) a computation engine that converts RTT signals into target sending rates;
and

3) a control engine that inserts delays between segments to achieve the
target rate.

*Independent instance for each flow

RTT measurement
 1) the serialization delay to transmit all packets
in the segment, typically up to 64 KB; (not
included)

2) the round-trip wire delay for the segment and
its ACK to propagate across the datacenter;
(small & constant)

3) the turnaround time at the receiver to
generate the ACK; (negligible)

4) the queuing delay at switches experienced in
both directions.

Congestion control algorithm

proportional–integral–derivative control (PID control)
without integral

T_low: no empty queue; T_high: no long queue

Empty queue: low latency and low throughput; long queue:
high latency and high throughput

Exponentially Weighted Moving Average (EWMA) filter:
detect the overall trend in the rise and fall in the queue,
while ignoring minor queue fluctuations that are not
indicative of congestion

Hyperactive increase (HAI) for faster convergence

exponentially

Gradient approach vs. Queue size approach
Set T_high = T_low =: T_target

Both low latency and high throughput More smooth traffic and better use of share

Evaluations
● Evaluate the TIMELY at two scales:

1. A small-scale testbed (a single rack).
■ Throughput
■ Fairness
■ Packet latency
■ Timing accuracy

2. Hundreds of machines in a classic Clos network topology.
■ Traffic workload
■ Hosts collect measurements of per-connection throughputs
■ RPC latencies
■ RTTs

1. Small-Scale Experiments

The accuracy of RTT samples
● Observe the impact to the throughput from added RTT noise

○ Uniformly distributed RTT noise from 0 to n (x-axis).

● Higher noise leads to more throughput degeneration. (expected behavior)

TIMELY vs DCTCP - RTT

● TIMELY keeps average RTT 90% lower than that of DCTCP
● TIMELY keeps tail RTT 92% lower than that of DCTCP
● No throughput reduction for TIMELY

Performance Comparison

● TIMELY has about 90% shorter RTT than DCTCP and PFC
● FAST has better RTT with low throughput. But the RTT is still more

than 5x longer with higher bandwidth that is comparable to TIMELY

TIMELY - Fairness
● The throughput is close to the

fair share (4 connections,
500Mbps each).

● The RTT remains low.

Throughput and RTT vs different Tlow

● Shorter Tlow leads to shorter
RTT

● Larger segments leads
lower throughput with
shorter Tlow

● It is hard for large segments
to maintain both short RTT
and high throughput

Throughput and RTT vs different Thigh

● More sessions leads to higher
RTT

● Shorter Thigh may reduce the
throughput

● Optimal Thigh is between 100
and 200 microseconds

Throughput and RTT vs different pacing rate
● Smoothes the bursts
● Segment size is 64KB

● Greater pacing (lower pacing
rate) leads to shorter RTT and
higher throughput

● Optimum pacing rate is 700Mbps

Hyper Active Increment (HAI)
● Initial fair rate = 200 Mbps (10 connections)
● Target fair rate = 2000 Mbps (1 connection)

● HAI makes TIMELY to reach the target rate faster.

2. Large-Scale Experiments

TIMELY vs PFC - Saturated Load
● TIMELY has a higher saturated load than that of PFC

TIMELY vs PFC - RTT (with RPC requests)
● Each client pick up a server

with the longest path

● Uniformly and randomly send
64KB RPC (remote
procedure call)

● TIMELY leads to 60% shorter
median RTT and 75% shorter
99 percentile RTT

TIMELY vs PFC - RPC Latency
● 70% shorter median RPC

latency for TIMELY (with high
load)

● Same 99 percentile RPC
latency for both TIMELY and
PFC (because end-host
queueing delay is included in
RPC latency)

Network imbalance
● Uniform random background

traffic + added incast load

● For PFC, with added incast load,
the throughput reduced
significantly. And the RTT
increased about 100%

● For TIMELY, both throughput
and RTT does not have
noticeable change with added
incast load

Low = 0.167, Med = 0.3, High = 0.5

Application Level Benchmark (Storage)

Summary
● RTT correlates well with queue buildups and congestion level in data centers

● TIMELY is able to respond to microsecond-level RTT change (with NIC
support) and adjust the data rate to effectively mitigate the congestion and
increase the overall throughput while reduce the RTT

Discussion
● What is one queue decreasing but another one increasing?
● Including integral part of PID, helpful for historic fairness?

● How about building the TIMELY into NIC hardware (chip)?
● New algorithm (e.g. machine learning based) to dynamically tune the

parameters in the algorithm.
● Will TIMELY work well in the Internet?

