
[DKS89] Demers, Keshav, and Shenker, “Analysis
and Simulation of a Fair Queueing Algorithm,” Proc.
of ACM SIGCOMM '89, 19(4):1-12, Sep. 1989

Advanced
Computer Networks

Queueing and Scheduling

When would you see a queue?
• when resource is limited
• and there is a contention for the resource
• in networking context: when packet incoming rate is

faster than outgoing (service) rate

Want to be fair in service and to protect against
misbehaving connections

Scheduling discipline: which packet to serve next?

Queue Management

Queue management design issues:
• Fairness
• at the minimum want

protection against
malicious sources

• Delay bound
• Drop policy
• Cost of operation

A resource centric view: max-min fair share,
assuming users have equal rights to resource

FIFO/FCFS Scheduler:
B:

buffer
size µ:

service
rate

Max-Min Fair Share

Let:

µtotal: total resource (e.g., bandwidth) available

µi: total resource given to (flow) i
µfair: fair share of resource

ρi: request for resource by (flow) i

Max-Min fair share is µi = MIN(ρi, µfair)
µtotal =∑ µi

�
#$%	'()

Max-Min Fair Share

In words: max-min fair share maximizes minimum
shares of flows whose demands have not been
fully satisfied

1.no flow gets more than its request

2.no other allocation satisfying condition 1 has a
higher minimum allocation

3.condition 2 remains recursively true as we
remove the minimal request and reduce total
resource accordingly

Max-Min Fair Share Example

Let:
µtotal = 30

Initialy µfair = 10
ρC = 8, so unused resource (10 – 8 = 2) is divided
evenly between the remaining i's whose demands
are not yet fully met

Thus, µfair = 10 + 2/2 = 11

i ρi µi

A 12 11
B 11 11
C 8 8

Bit-by-Bit Round Robin

1 round, R(), is defined as
all non-empty queues have
been served 1 quantum
• R(t5) = 2
• time at Round 3? Round 4?

BbB-RR achieves max-min fair share

Max-min fair-share isolates flows

BbB-RR protects against misbehaving flows

A.k.a. Generalized Processor Sharing (GPS)

µ
RR

1 bit

1234

123

5 1234

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10t11

Fluid-Flow Approximation

A continuous service model
• instead of thinking of each quantum as

serving discrete bits in a given order
• think of each connection as a stream of fluid,

described by the speed and volume of flow

At each quantum the
same amount of fluid
from each (non-empty)
stream flows out
concurrently

µRR

R1R2R3R4R5

Packetized Scheduling

Packet-by-packet round robin:
Problem:
Gives bigger share to
flows with big packets

Packet-by-packet fair-queueing:
• F: finish round, the round a

packet finishes service
• simulates RR in the

computation of F’s
• serve packets with the

smallest F first

µ
RR

12

123

t2

t3

t5

t6t8 t7t9

456

t1t4

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7

Start and Finish Rounds

At what round does packet i
of flow α start seeing service?
Sαi = MAX(Fαi–1, Aαi)
• Aαi = R(tαi): round at the time packet i arrives
• Sαi = Fαi–1 if there is a queue, Aαi otherwise

When does packet i finish service?
Fαi = Sαi + Pαi,
where Pαi is the size (service time) of packet i

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7

Round Computation

Recall: 1 round is defined as all active flows have
been served 1 quantum

Round’s rate of change: ∂R/∂t = µ/Nac(t), where
• µ: link bandwidth
• Nac(t): number of active flows at time t

Flow α is active at time t if R(t)≤ Fαi ,
where i is the last bit of flow α in queue

The speed of 1 round through all active flows
depends on the number of active flows: faster if
there are less active flows

Round# vs. Wall-Clock Time
Let:
• time: wall-clock time
• round: virtual-clock time
• µ = 1 unit
• tαi: arrival time of packet i of flow α

Computing the rate of change:
a: Nac = 1, ∂R/∂t = 1,
b: Nac = 2, ∂R/∂t = ½, δ2 = 2∗δ1
c: at the beginning, Nac = 1, ∂R/∂t = 1,

halfway serving packet i, a packet belonging to
another flow arrives, Nac = 2, ∂R/∂t =½

As Nac(t) changes, finish round stays the same,
actual time stretches

a bc

Wall-clock time

Round#

Pi
α

Si
α

Fi
α

ti
α ti

α+δ1 ti
α+δa ti

α+δ2

Round Computation Example
Scenario:
• flows A has 1 packet of size 1 arriving at time 0
• flows B and C each has 1 packet of size 2 arriving at time 0
• flow A has another packet of size 2 arriving at time 4

Slope (∂R/∂t):
a = ⅓, b = ½,
c = ⅓, d = 1

What is the arrival
round of A’s 2nd packet?
R(tA

2) = 1.5
a

b

c

Wall-clock time

Round#

0 3 5.5 7

d

4

1

1.5

2

3.5

F1
A

F1
B
F1
C

F2
A

assuming fluid-flow approximation

Arrival Round Computation
When packet i of an active flow arrives, its finish
time is computed as Fαi = Fαi–1 + Pαi , where Fαi–1
is the finish time of the last packet in α’s queue

If flow α is inactive, there’s no packet in its queue,
Fαi = Aαi + Pαi , how do we compute Aαi?

If flow α has been inactive for Δt time and there has
been Nac flows during the whole time, we can
compute Aαi = Fαi–1 +Δt(1/Nac) ⇒ inactive flow
must store Fαi–1

But what if Nac has changed, several times, over Δt?

Iterated Deletion
Variables:
• tl: the time when the round was last computed
• R(tl): the round at that time
• global array of finish rounds of inactive flows, sorted

Want to compute the current Round by taking into
account each of the finish rounds in the array

Finish round rate at time t: ∂Fαi/∂t = µ/Nac(t)
We know Nac(t) hasn’t changed since tl:
• Finish round, given finish time: Fαi = R(tl) + μ (t(Fαi) − tl)
• Finish time, given finish round: t(Fαi) = tl + [Fαi − R(tl)]Nac/µ

Now walk the global array and compute “round
catchup” to the present time

Iterated Deletion: the Algorithm
Let tC

i be the arrival time of packet i of flow C
For each flow αwith packets enqueued or
has last finish round in the global array {

compute t(Fαl) // finish time of flow α
if (t(Fαl)≤ tC

i) { // if flow is inactive by time tC
i

R(t(Fαl)) = Fαl // finish round when flow went inactive
tl = t(Fαl) // the last round computation time

Nac– –
} else { break }

}
R(tC

i) = R(tl) + μ/Nac(t
C

i − tl), // Aαi

assuming Nac≠ 0, else may reset R
tl = tC

i

Time complexity: O(Nac)

Variation: Credit Accumulation
Allow a flow to have a bigger share
if it has been idle

Compute bid per packet:

Bαi = MAX(Bαi–1, Aαi − δ) + Pαi

• if δ = 0, no credit accumulated, Bαi = Fαi

• if δ = ∞, Bαi = Fαi–1 + Pαi,
regardless of packet i’s arrival time

Credit accumulation is discouraged because it
can be abused: accumulate credits for a long
time, then send a big burst of data

Weighted Fair Queueing

Fαi-1 = Sαi + Pαi/ω
α,

where ωα is the weight (reserved rate) of flow α

µWFQ

12

123

t3

t1

t5

t6t8 t7t9

456
F=1

F=2

F=1

F=3

F=2

F=4
F=5

F=6

ω=2

ω=1

t2t4

Pre-emptive WFQ

Non-preemptive worst-case: packet arrives as
another packet of larger F just started service

Packet has to wait Pmax round before seeing service

µWFQ

1

1

t4

t1t5

1
F=2

F=4

ω=1

ω=1

t5

pre-emptive

t2

Limitations of WFQ

Round computation expensive: must re-
compute R every time Nac(t) changes

Packetization causes two kinds of unfairness:
• shift from fluid-flow round-robin: fairness

“quantized” by minimum packet size (Absolute
Fairness Bound)
• unfairness to some flows: if flows have different

packet sizes (Relative Fairness Bound)

