The Akamai Network : A Platform for High-Performance Internet applications

Erik Nygren, Ramesh K. Sitaraman, Jennifer Sun Proc. of ACM SIGOPS '10, 44(3):2-19, Jul. 2010

Presented by: Zaina and Shuang

Overview

- Introduction
 - Internet Application Requirements
 - Internet Delivery Challenges
- What is a CDN? And its overview
- CDN for content, streaming media, and application delivery
- Platform Components
- Example
- Overall benefits and Results
- Assumptions, Challenges, and followup
- Q&A

The Internet is expanding every second

- Internet's magnanimity brings with it challenges of performance, reliability, and scalability
- Any outage can cost millions of dollars & bad reputation
- Internet's architecture just as-is is incapable to provide desired performance & reliability due to bottlenecks
 - \circ $\;$ Latency, packet loss, network outages, inefficient protocols & inter network friction
- Scalability : Online video, Live streaming, HD to global audience?
- We need to therefore bridge the gap between capabilities & future requirements

Internet Delivery Challenges

- <u>Peering point congestion</u>: The middle mile high cost & zero revenue points where networks interact with each other, due to lack of investment cause **packet loss & increase latency**
- <u>Inefficient routing protocols</u>: BGP is based only on AS hop count, & is inefficient in times of failover, human errors & foul play leading to route flapping, bloated paths & outages.
- <u>Unreliable networks</u>: Due to natural & accidental reasons, & fragile peering there may be outages.
 - Eg: Southeast asia & Middle East 75% reduction
 - Sprint & cogent depeering, 3500 networks affected
 - BGP hijacking global YT blackout by Pak

Internet Delivery Challenges (contd.)

- Inefficient communications protocols
 - TCP designed for reliability & congestion avoidance, BUT it carries significant overhead, & has suboptimal performance.
 Table 1: Effect of Distance on Throughput and Download Time

0	TCP requires an ACK for every packet
	being sent, bottleneck in videos and
	large files

- HTTP requests require multiple round trips
- Limit on # parallel connections
- O Throughput ∝ 1/RTT

Distance (Server to User)	Network RTT	Typical Packet Loss	Throughput	4GB DVD Download Time
Local: <100 mi.	1.6 ms	0.6%	44 Mbps (high quality HDTV)	12 min.
Regional: 500–1,000 mi.	16 ms	0.7%	4 Mbps (basic HDTV)	2.2 hrs.
Cross-continent: ~3,000 mi.	48 ms	1.0%	1 Mbps (SD TV)	8.2 hrs.
Multi-continent: ~6,000 mi.	96 ms	1.4%	0.4 Mbps (poor)	20 hrs

Internet Delivery Challenges (contd.)

- Scalability
 - o Internet application owners/providers need to have exactly enough resources.
 - \circ $\:$ Underprovisioning \rightarrow Potential Business loss; Overprovisioning \rightarrow Waste of \$\$ on unused infrastructure
 - \circ $\;$ Ensuring adequate n/w b/w across all points between end users & the application
- Application limits and slow adoption to change
 - End users' software restrictions
 - IE 6,7,8 etc

Solution to our Problems??? - CDN!!

- Started by caching static site content at the edge of the internet, close to end users
- Today: web & IP based applications, media delivery networks for live HD & on demand media, and Edge computing networks
- Additionally: maintain visibility & control for enterprises
- Also robust security, logging, SLAs, diagnostics, reporting & analytics, management tools

Delivery Network: Overview

- Delivery Network = Virtual Network
 s/w layer over the Internet
 - Deployed on widely distributed h/w
- Aimed at providing reliability, performance, security & scalability
- Advantage: Works over Internet as-is with no client software or network changes

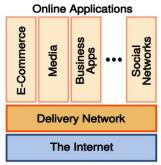
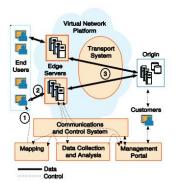
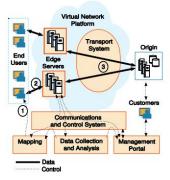



Figure 2: A delivery network is a virtual network built as a software layer over the Internet that is deployed on widely distributed hardware.


Anatomy of a delivery network

- 1. Mapping system: $URL \rightarrow IP$ address of an edge server
- Edge servers ∈ Edge server platform serves requested content (large distributed system with tens of thousands globally deployed servers)
- 3. Responding to the request
 - a. Either cached content
 - b. To be fetched from the origin via the **transport** system

Anatomy of a delivery network (contd.)

- 4. Communications & control system
- 5. Data collection & analysis system: collecting & processing data
- 6. Management portal
 - a. Configuration management portal
 - b. Users interaction visibility

** Specific design for each delivery system changes based on the purpose it serves

System Design Principles

- Design for reliability: ≅100% E2E availability, no SPOF.
- Design for scalability: More data, traffic, content & customers
- Limit human management necessity: *ensuring easy scalability, and automatic fault tolerance, deployment & configuration*
- Design for performance: *better response times, cache hitrate & network resource utilization*

High performance Streaming & Content delivery networks

Key: Minimize long haul communication through middle bottleneck layers, Hence large number of distributed servers are as "close" as possible to end users

- Video-grade scalability
 - Speed, reliability, E2E scalability.
 - HD video has reached unimaginable orders of magnitude, live content being accessed in parallel, and continuous up & download.
- Throughput across the encoders to servers to end users is important.

• Streaming Performance

- Streaming availability
- o Startup time
- Frequency & duration of interruptions
- Effective bandwidth
- o Optimization of packet loss, jitter, frame loss, RTT & E2E delay

Transport System

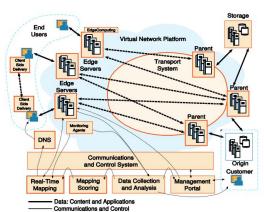
- Tiered Distribution: Cold/Infrequently accessed content
 - Edge clusters are connected to several parent clusters, and retrieves content from the parent cluster when it doesn't have the data ready
 - Reduces the load on the origin server
 - Origin only connected to a few dozen parent clusters that are categorized

- Transport System (contd.)
 - Overlay Network: Live Streaming
 - Live Stream is captured, encoded & sent to clusters of servers: Entrypoints
 - Entrypoints transport stream packets to edge servers in a publish subscribe model
 - Reflectors are intermediaries between entrypoints & edge clusters, making multiple copies of each received stream enabling rapid replication.
 - Reflectors also provide multiple paths between edge clusters and entrypoints.
 - Transport system chooses the best path or multiple link disjoint paths that are most efficient.
 - Prebursting: reducing startup time

High Performance Application Delivery Networks

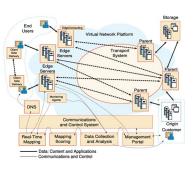
- Transport system for Application Acceleration: non cacheable customer content, retrieving content from the origin server
 - Using Akamai's highly distributed edge servers as a high performance overlay network
 - End user mapped to an edge server connects to an Akamai m/c near the origin server
 - Performance Improvement Techniques
 - Path Optimization: alternate paths after analyzing topology of the overlay
 - Packet loss reduction: multipath and FEC techniques
 - Transport protocol optimizations: Proprietary transport layer protocols
 - Application optimizations: Parse & prefetch embedded content; Content compression

High Performance Application Delivery Networks (contd.)

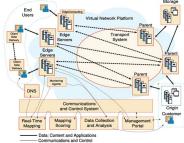

- Distributing Applications to the Edge: EdgeComputing services
 - Cloud computing: resources are allocated on demand and near the end user
 - Challenges:
 - Session management
 - Security sandboxing
 - fault management
 - distributed load balancing
 - Resource monitoring and management
 - Testing and deployment

High Performance Application Delivery Networks (contd.)

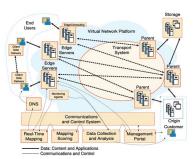
- Applications that can run in this fashion are based on
 - Content aggregation/transformation
 - Static Databases
 - Data collection
 - Complex applications: that run the presentation layer on the edge
- High performance, scalability, fault tolerance
- Quick development, and deployment


Platform Components

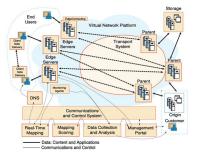
- Edge Server Platform
- Mapping System
- Communications and Control System
- Data Collection and Analysis System
- Additional Systems and Services


Platform Components

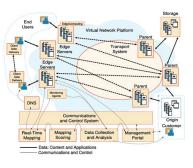
- Edge Server Platform
 - Process end user requests and serve the requested content
 - Configurable via metadata configuration
 - EdgeComputing
 - Cache control & Cache indexing
 - Response to origin server failure
 - ...
 - Make it simple to evolve platform to meet customers' changing needs


Platform Components

- Mapping System
 - Scoring mapping
 - Create a current topological map capturing the connectivity of the entire Internet
 - Enable immediate response to Internet faults
 - Real-time mapping
 - Create the actual maps used by the Akamai
 - Mapping to cluster & Mapping to server

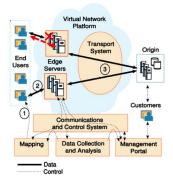

Platform Components

- Communications and Control System
 - Real-time distribution of status and control information
 - Dynamic configuration updates
 - Key Management Infrastructure
 - o ...

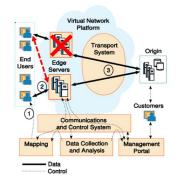

Platform Components

- Data Collection and Analysis System
 - Log collection
 - Real-time data collection and monitoring
 - Analytics and Reporting

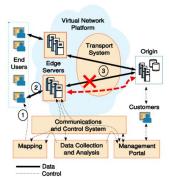
Platform Components


- Additional Systems and Services
 - DNS
 - Monitoring Agents
 - Global Traffic Manager
 - Storage
 - Client Side Delivery
 - Management Portal

Example: Multi-level Failover


.

- Machine failure
 Machine is down within an edge cluster
 - Another machine starts responding to the IP address of the failed machine
 - Mapping is updated and redirects new requests


Example: Multi-level Failover

- Cluster failure .
 - An entire cluster fails
 - Mapping is rapidly updated and do a new assignment

Example: Multi-level Failover

- Connectivity failure •
 - Connectivity between the origin server and the 0 edge degrades
 - Use path optimization to find alternate paths

Overall Benefits and Results

- Content and Streaming Delivery (3 examples) •
 - New York Post
 - Handle its flash crowd
 - 20X ↑ faster for home page downloading
 - U.S. Government 0
 - Protection against DDoS attack (8 years' worth of traffic in one day) .
 - Maintain a normal operation of U.S. gov. websites
 - MySpace 0
 - Offload 98% of its traffic to Akamai
 - 2.6X ↑ speedup to U.S. users, 6X ↑ to international users

Overall Benefits and Results

- Application Delivery (3 examples)
 - Enterprise applications
 - Help enterprise overcome performance and reliability challenges
 - Global performance improvements from 100% to 700% .

 - Large file transfers
 5X ↑ large file (2 GB) transfer (Europe to the US)
 4-5X ↑ large files transfer using SFTP
 2.3X ↑ file transfers over a VPN (India and the US)
 - EdgeComputing: Sony Ericsson
 - Phone configurator, shopping cart, and dealer locator-to the edge
 - Response time 3X↓ & infrastructure needs 65% ↓
 - Application availability ↑ from 92% to 100%

Advantages

- Caching
 - Cache content from a centralized server to local cluster
 - Reduce load on the origin server
 - Absorb and mitigate service attack
- Faster page loads and faster transactions
- Strengthen customer loyalty

Weaknesses & Challenges

- Difficult to configure
 complicated API & hard-to-understand configs
- Operate too much as a black box
 - \circ $\;$ customers have little transparency into how it works
- Challenges
 - Some content provider builds their 'DIY' CDN
 - Lots of competitors

Competitors

- Other CDN providers
 - MaxCDN
 - Level 3
 - Amazon Cloudfront
 - Google Pagespeed
 - CloudFlare
 - Verizon DMS
 - o ...

verizon CloudFlare

Akamai in the news

- 216,000 servers in over 120 countries and within more than 1,500 networks around the world
- Eighty-five percent of the world's Internet users are within a single "network hop" of an Akamai CDN server.
- Stock prices are dropping, and the revenue for Q3 is only 5% up year-over-year
- Apple, Microsoft & Facebook are moving much of their traffic to in-house CDNs
- Daily web traffic reaching more than 30 Terabits per second.
- Delivers nearly 3 trillion Internet interactions each day.
- Enables more than \$250 billion in annual e-commerce for its online retail customers

Discussion / Q&A