

# ADVANCED COMPUTER NETWORKS

[D+13] Drago et al., "Benchmarking Personal Cloud Storage," Proc. of the 13th ACM SIGCOMM Conf. on Internet Measurement (IMC '13), 2013

[D+12] Drago et al., "Inside DropBox: Understanding Personal Cloud Storage Services," *Proc. of the 12th ACM SIGCOMM Conf. on Internet Measurement (IMC '12)*, 2012

## Goals of Study

Investigate the performance improvements employed by various personal cloud service providers to synchronize clients' files and their effectiveness

Biggest determining factor in performance is client-storage distance, some providers (Google) are geographically distributed, most others are not (yet)



#### Motivation

Personal cloud storage is gaining share of Internet traffic, e.g., at one European university campus, DropBox traffic accounted for 4% of traffic or about 1/3 of YouTube traffic [D+12]



#### **Providers Studied**

DropBox: most popular service, established 1997

- control traffic goes to DropBox's data centers
- storage provided by Amazon EC2 and S3

Google Drive: public launch in April 2012

Microsoft SkyDrive: public launch in April 2012

LaCie Wuala: does client-side encryption

Amazon Cloud Drive: included because like DropBox, it relies on Amazon Web Services (AWS)

#### Providers Not Studied [D+12]

Apple iCloud: could have more clients than DropBox

- but doesn't carry as much traffic
- and doesn't allow clients to store arbitrary files

Others: SugarSync, Box, Ubuntu One: not as popular



#### System Traffic

All providers require client authentication

• Microsoft uses  $4 \times$  more traffic than others, to contact 13 Microsoft Live servers (Why?)

All providers periodically poll server for update:

- LaCie: every 5 mins (generating 60 bps)
- Google: 40 secs interval (42 bps)
- DropBox and Microsoft: 1 min interval (82 bps and 32 bps, resp.) 900 + ------

Amazon: once every 15 secs (6 kbps)



## Performance Improvements

Chunking: split large content into fixed size data units

• unit of deduplication, delta encoding, and compression

Bundling: send multiple small files as one chunk

Deduplication: avoid sending chunks already stored on servers

- eliminates duplication in transmission and storage (across users?)
- only DropBox and LaCie implement deduplication, even for previously deleted files

Delta encoding: send only the diff of old and new chunks

Data compression, per chunk

# Chunking

Simplifies fault recovery: allows for partial retransmissions, but each chunk is delimited by a pause, introducing delay

- Amazon doesn't do chunking
- Google uses 8 MB chunks
- DropBox uses 4 MB chunks [D+12]:
- each treated as an independent object
- identified by a SHA256 value, part of a file's meta data
- each device keeps a database of meta-data info
- > 40% of flows have at least 2 chunks
- Microsoft and LaCie uses variable-size chunks

#### Bundling

Only DropBox implements bundling, starting April 2012, improving throughput dramatically (by 65%), but each chunk is still sent sequentially [D+12]

|                      | Mar/Apr |                    | Jun/Jul |         |  |  |
|----------------------|---------|--------------------|---------|---------|--|--|
|                      | Median  | Average            | Median  | Average |  |  |
| Flow size            |         |                    |         |         |  |  |
| Store                | 16.28kB | 3.91MB             | 42.36kB | 4.35MB  |  |  |
| Retrieve             | 42.20kB | $8.57 \mathrm{MB}$ | 70.69kB | 9.36MB  |  |  |
| Throughput (kbits/s) |         |                    |         |         |  |  |
| Store                | 31.59   | 358.17             | 81.82   | 552.92  |  |  |
| Retrieve             | 57.72   | 782.99             | 109.92  | 1293.72 |  |  |

Google and Amazon open a separate TCP/SSL connection for each file (as did HTTP 1.0)

Microsoft and LaCie reuse TCP connections, but files are sent sequentially, waiting for application-layer ACK for each file

#### **Data Compression**

- a) Only DropBox and Google implement compression
- b) "Compression" of already compressed file could result in larger file
- c) Google checks file extension and magic number (in file header) before compression







#### **Delta Encoding**

Only DropBox implements delta encoding

- appending up to file size of 2 MB results in only the addition being sent
- random addition in the middle of large files causes data to shift across chunks, resulting in more data to be sent (delta-encoding is done at chunk granularity)



#### Overhead and Completion Time

Sending 1 MB of data as one 1 MB file, 10 100 KB files, and 100 10 KB files

- a) Microsoft has the highest overhead, for no clear reason
- b) bundling reduces completion time for small files, encryption doesn't seem to affect it
- c) in all cases overhead is higher than data size!







(b) Duration (note log y-axis)

(c) Overhead (note log y-axis)

#### Benchmarking Methodology



#### DropBox Usage [D+12]

#### Datasets overview 3/24/12-5/5/12

| Name     | Type           | IP Addrs. | Vol. (GB)  |
|----------|----------------|-----------|------------|
| Campus 1 | Wired          | 400       | 5,320      |
| Campus 2 | Wired/Wireless | 2,528     | $55,\!054$ |
| Home 1   | FTTH/ADSL      | 18,785    | 509,909    |
| Home 2   | ADSL           | 13,723    | 301,448    |

DropBox users tend to download more than upload, with download/upload ratio:

• Campus 2: 2.4 • Campus 1: 1.6

Home (Residential ISP) 1: 1.4
Home (Residential ISP) 2: 0.9

### DropBox Usage [D+12]

Group IP addresses according to behavior:

- occasional users: upload and download < 10KB
- upload/download only: upload/download 3 orders of magnitude > in the other direction (1 GB vs. 1 MB)

Fraction 0.8

- heavy users: all other active users
- idle users: client running, no file exchanged (30%)

#### Upload-only:

- 7% of IP addresses
- 21% of Home1 transfer volume, 11% of Home2

#### Download-only:

- 26% of Home1 IPs, 28% of Home2
- 25% of Home1 transfer volume, 28% of Home2

Heavy users, households have multiple devices

- 37% of Home1 IPs, 33% of Home2
- 50% of DropBox sessions are from heavy users

## DropBox Usage [D+12]

Shared folders: to what extent DropBox is used for

content sharing

• Campus1: 13% has 1 folder (Home1: 28%)

• 50% has more than 5 folders (Home1: 23%)



Usage follows the usual daily and weekly patterns Sessions can last up to 4 hours

Only a small percentage of direct link downloads is bigger than 10 MB, i.e., not one-click hosting movies or archives