
Jellyfish: Networking
Data Centers Randomly

Singla, Hong, Popa, and Brighten Godfrey.
Originally presented in NSDI 2012.

presented by Harrison Chandler

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Motivation

Industry desires incremental expansion in data
centers
o  Facebook “adding capacity on a daily basis”
o  84% of enterprises surveyed planned on expanding

data centers
o  Ice-Cube (SGI) and EcoPod (HP) advertise as

incrementally expandable

Data centers need to maintain high throughput

Prior work

Highly structured topologies
•  Clos/Fat-tree

o  LEGUP: finds optimal upgrades for Clos networks;
needs free ports to exist in network

Random topologies
•  Scafida: builds scale-free network; not

evaluated for incremental deployment
•  Small-World Data Center: uses regular

lattice, still structured

Structure constrains expansion
Coarse design points

o  Hypercube: 2k switches
o  3-level Fat-Tree: 5k2/4 switches

3-Level Fat-Tree, commodity switches

o  24-port switch -> 3,456 servers
o  32-port switch -> 8,192 servers
o  48-port switch -> 27,648 servers

Workarounds exist, but unclear how to maintain structure
incrementally

o  Overutilize network? Uneven / constrained bandwidth
o  Overprovision for later? Wasted investment

Slide contents from Chi-Yao Hong, “Jellyfish: Networking Data Centers Randomly.” https://
www.usenix.org/conference/nsdi12/jellyfish-networking-data-centers-randomly

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Jellyfish

Solves incremental expansion problem by
eliminating structure

Builds a random graph between top-of-rack
(ToR) switches
o  switch i has ki ports
o  use ri ports to connect to other ToR switches
o  use ki - ri ports to connect to servers
o  every switch will have degree ri

Jellyfish topology

Slide contents from Chi-Yao Hong, “Jellyfish: Networking Data Centers Randomly.” https://
www.usenix.org/conference/nsdi12/jellyfish-networking-data-centers-randomly

Constructing Jellyfish

ToR switch

Pick a random pair of
switches with open
ports and connect
them

Continue until no
further links can be
added

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

Constructing Jellyfish

ToR switch

If a switch exists with
two or more free
ports, break an
existing link and
insert two new links

This also works for
incremental
expansion

Jellyfish throughput

Intuition: end-to-end throughput inversely
proportional to resources used to deliver data

=> Minimizing path lengths will improve
throughput

Jellyfish throughput

Slide contents from Chi-Yao Hong, “Jellyfish: Networking Data Centers Randomly.” https://
www.usenix.org/conference/nsdi12/jellyfish-networking-data-centers-randomly

Jellyfish throughput

Slide contents from Chi-Yao Hong, “Jellyfish: Networking Data Centers Randomly.” https://
www.usenix.org/conference/nsdi12/jellyfish-networking-data-centers-randomly

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Evaluation

Jellyfish evaluated in two parts
1) Topology: analyze raw capabilities of the
network, assume optimal routing

2) Routing/Congestion control: analyze impact
of routing choices

Random permutation traffic used for all
throughput tests

Evaluation

1) Jellyfish can connect more servers at lower
cost
2) Jellyfish can provide higher bisection
bandwidths at same network cost

Evaluation

Incrementally expanding Jellyfish is just as
effective as building the network from scratch

Evaluation
Routing: tested with ECMP and k shortest
paths

Congestion control: tested with TCP and
multipath TCP

Evaluation

1) Jellyfish has better throughput than Fat-tree,
even with sub-optimal routing
2) Both networks exhibit flow fairness

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Cabling

Place switch racks in the physical center,
aggregate cables run between switches and
server racks

Large data centers: have multiple clusters,
localize some links within a cluster
o  only slightly reduces throughput

Overview

•  Motivation
•  Prior work
•  Jellyfish
•  Evaluation
•  Cabling
•  Conclusion

Strengths

Simple method of building network topology

Adding additional capacity to the data center
seems very easy

Topology analysis was thorough

Weaknesses

Evaluation doesn’t account for traffic locality
(biases results in favor of Jellyfish)

No comparison to Scafida

k shortest paths routing implementation

