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The Problem 

How to run experiments in campus networks? 
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• Experimenters’ dream  
• Vendor’s Nightmare 

– Complexity of support 
– Market protection and 

barrier to entry 
• Hard to build my own 

– Software only:          
Too slow 

– Hardware/software: 
fanout too small 

We also want  
• Isolation:  

– Regular production traffic untouched 
• Virtualized and programmable:  

– Different flows processed in different ways 
• Open development environment for all researchers 

(e.g. Linux, Verilog, etc) 
• Flexible definitions of a flow 

– Individual application traffic  
– Aggregated flows 
– Alternatives to IP running side-by-side 
– … 
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OpenFlow Switching 
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Dedicated OpenFlow switches 

OpenFlow Switching 

 

5 OpenFlow-enabled  switches 

Flow Table Entry 
• Type 0 OpenFlow Switch 
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1. Forward packet to port(s) 
2. Encapsulate and forward to controller 
3. Drop packet 
4. Send to normal processing pipeline 

+ mask 

Packet + byte counters 

OpenFlow Usage Models 
• Experiments at the flow level 

– User-defined routing protocols 
– Admission control 
– Network access control 
– Network management 
– Energy management 
– VOIP mobility and handoff 
– … 

• Experiments at the packet level 
– Slow: Controller handles packet processing 
– Fast: Redirect flows through programmable hardware 
– Modified routers, firewalls, NAT, congestion control… 

• Alternatives to IP 
 

7 



Experiments at the Packet Level 
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Strengths 

• A pragmatic compromise 
– Allow researchers to run experiments in their 

network … without requiring vendors to expose 
internal workings. 

• A simple basic idea 
– Exploit the fact that most modern Ethernet 

switches and routers contain flow-tables. 

• Enabling innovation if widely accepted 
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Weaknesses 

• Fixed size flow table header 
– Will increase the cost of searching in TCAM 

• Assuming the basic processing unit is flow 
– Flow table may not be the most proper 

abstraction of primitive and workflow  

• Membership of consortium is not open to 
companies 
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Onix: a Distributed Control Platform 
for Large-Scale Production Networks 
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The Problem 

• Computer networks lack of a general control 
paradigm 

• Each new function must provide its own state 
distribution, element discovery, and failure 
recovery mechanisms 
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Software-Defined Networking 

• Network-wide control platform 
• Handles state distribution  
• Provide a programmatic interface  

 
• Simplifies the duties of both switches and the 

control logic  
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Software-Defined Networking 

• Most important challenges: 
– Generality 
– Scalability 
– Reliability 
– Simplicity 
– Control plane performance 
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Design of Onix 

• Components 
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Design of Onix 

• Useful and general API 
– Read 
– Write 
– Register for notifications  
– Customize the data model  
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Network Information Base (NIB) 

• A graph of all network entities within a 
network topology 

• Entity: Key-value pair with global identifier 
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Default set of typed entities 

Network Information Base (NIB) 

• Functions provided by the Onix NIB API 
 
 
 
 
 
 

• The NIB neither provides fine-grained nor 
distributed locking mechanisms 18 

Scalability 

• Partition 
– An instance keeps only a subset of the NIB 

• Aggregation 
– The network managed by a cluster of Onix nodes 

appears as a single node in a separate cluster’s NIB 

• Consistency and durability 
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Reliability 
• Network element and link failures 

– The same way as modern control planes 
• Onix failures 

– Running instances detect and take over 
– More than one can manage simultaneously 

• Connectivity infrastructure failures 
– Using standard networking gear 
– Reestablishing connectivity with the help of 

control logic 
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Distributing the NIB 

• State Distribution Between Onix Instance 
– A transactional data store (for durability of the 

local storage)  
– A one-hop DHT (for holding volatile network state 

in a fast manner) 
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Distributing the NIB 
• Network element state management 

– Similar to the integration with OpenFlow 
 

• Consistency and Coordination 
– Application need to register inconsistency  
– Application must instruct the corresponding 

import and export modules to adjust Onix 
instances’ behavior 

– For coordination, embeds Zookeeper 
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Implementation 

• 150,000 lines of C++ and third party libraries 
• A single instance can run across multiple 

processes 
• Language independent, components are 

loosely-coupled  
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Applications 
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Strengths 

• Not about ideology of SDN, but about its 
implementation 

• Deal with the scalability and reliability 
problem, provide more useful and general API 
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Weaknesses 

• Relies on application-specific logic to detect 
and provide conflict resolution of the network 
state 

• Still difficult to build control logic 
• No pictures to illustrate 
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Thank you 


