
OpenFlow and Onix

Bowei Xu
boweixu@umich.edu

[1] McKeown et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM
SIGCOMM CCR, 38(2):69-74, Apr. 2008.
[2] Koponen et al., "Onix: a Distributed Control Platform for Large-Scale Production
Networks," Proc. of the 9th USENIX Conf. on OSDI '10, Oct. 2010.

OpenFlow: Enabling Innovation
in Campus Networks

[1] McKeown et al., "OpenFlow: Enabling
Innovation in Campus Networks," ACM SIGCOMM
CCR, 38(2):69-74, Apr. 2008
[2] Clean Slate Design for the Internet – OpenFlow
archive.openflow.org/documents/OpenFlow.ppt

The Problem

How to run experiments in campus networks?
2

Standard
Network

Processing

hw
sw Experimenter writes

experimental code
on switch/router

User-
defined

Processing

• Experimenters’ dream
• Vendor’s Nightmare

– Complexity of support
– Market protection and

barrier to entry
• Hard to build my own

– Software only:
Too slow

– Hardware/software:
fanout too small

We also want
• Isolation:

– Regular production traffic untouched
• Virtualized and programmable:

– Different flows processed in different ways
• Open development environment for all researchers

(e.g. Linux, Verilog, etc)
• Flexible definitions of a flow

– Individual application traffic
– Aggregated flows
– Alternatives to IP running side-by-side
– …

3

OpenFlow Switching

4
Dedicated OpenFlow switches

OpenFlow Switching

5 OpenFlow-enabled switches

Flow Table Entry
• Type 0 OpenFlow Switch

6

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask

Packet + byte counters

OpenFlow Usage Models
• Experiments at the flow level

– User-defined routing protocols
– Admission control
– Network access control
– Network management
– Energy management
– VOIP mobility and handoff
– …

• Experiments at the packet level
– Slow: Controller handles packet processing
– Fast: Redirect flows through programmable hardware
– Modified routers, firewalls, NAT, congestion control…

• Alternatives to IP

7

Experiments at the Packet Level

8

Strengths

• A pragmatic compromise
– Allow researchers to run experiments in their

network … without requiring vendors to expose
internal workings.

• A simple basic idea
– Exploit the fact that most modern Ethernet

switches and routers contain flow-tables.

• Enabling innovation if widely accepted

9

Weaknesses

• Fixed size flow table header
– Will increase the cost of searching in TCAM

• Assuming the basic processing unit is flow
– Flow table may not be the most proper

abstraction of primitive and workflow

• Membership of consortium is not open to
companies

10

Onix: a Distributed Control Platform
for Large-Scale Production Networks

[3] Koponen et al., "Onix: a Distributed Control
Platform for Large-Scale Production Networks,"
Proc. of the 9th USENIX Conf. on OSDI '10, Oct.
2010.

The Problem

• Computer networks lack of a general control
paradigm

• Each new function must provide its own state
distribution, element discovery, and failure
recovery mechanisms

12

Software-Defined Networking

• Network-wide control platform
• Handles state distribution
• Provide a programmatic interface

• Simplifies the duties of both switches and the

control logic

13

Software-Defined Networking

• Most important challenges:
– Generality
– Scalability
– Reliability
– Simplicity
– Control plane performance

14

Design of Onix

• Components

15

Design of Onix

• Useful and general API
– Read
– Write
– Register for notifications
– Customize the data model

16

Network Information Base (NIB)

• A graph of all network entities within a
network topology

• Entity: Key-value pair with global identifier

17

Default set of typed entities

Network Information Base (NIB)

• Functions provided by the Onix NIB API

• The NIB neither provides fine-grained nor
distributed locking mechanisms 18

Scalability

• Partition
– An instance keeps only a subset of the NIB

• Aggregation
– The network managed by a cluster of Onix nodes

appears as a single node in a separate cluster’s NIB

• Consistency and durability

19

Reliability
• Network element and link failures

– The same way as modern control planes
• Onix failures

– Running instances detect and take over
– More than one can manage simultaneously

• Connectivity infrastructure failures
– Using standard networking gear
– Reestablishing connectivity with the help of

control logic

20

Distributing the NIB

• State Distribution Between Onix Instance
– A transactional data store (for durability of the

local storage)
– A one-hop DHT (for holding volatile network state

in a fast manner)

21

Distributing the NIB
• Network element state management

– Similar to the integration with OpenFlow

• Consistency and Coordination
– Application need to register inconsistency
– Application must instruct the corresponding

import and export modules to adjust Onix
instances’ behavior

– For coordination, embeds Zookeeper

22

Implementation

• 150,000 lines of C++ and third party libraries
• A single instance can run across multiple

processes
• Language independent, components are

loosely-coupled

23

Applications

24

Strengths

• Not about ideology of SDN, but about its
implementation

• Deal with the scalability and reliability
problem, provide more useful and general API

25

Weaknesses

• Relies on application-specific logic to detect
and provide conflict resolution of the network
state

• Still difficult to build control logic
• No pictures to illustrate

26

Thank you

