

EECS 494: Terrain Generation
Mt. Rainier, created by Manel Giuli with Terragen

Outline (1 of 2)

● Possible data representations
– Tiles
– Heightmaps
– Terrain Meshes
– Mini case-study: Chips

● Autogeneration
– Fault Formation
– Midpoint Displacement
– Particle Deposition
– Other methods

Outline (2 of 2)

● Tools
– L3DT
– Terragen

● Optimization methods
– Delaunay Triangulation
– ROAM and LOD
– Catmull-Clark Subdivision Algorithm

2D Representation: Tiles - 1

● Pretty simple; you have a set of tiles and a regularly-spaced
grid. Each grid in the square is occupied by a tile.
– Square grid
– 45º-view square grid (same as the square grid)
– Hexagonal “grid”

2D Representation: Tiles - 2

● The tile-based approach is simple, but it potentially suffers
from ugliness because the transitions between tiles is much
too harsh.

● Many games employ a technique described by David
Michael (http://www.gamedev.net/reference/articles/article934.asp) of
Samu Games (http://www.samugames.com/): blend transitions
between tiles.

● Rather than have lots and lots of tiles to implement
transitions, Michael implemented a precendence-and-
transparency approach.

http://www.gamedev.net/reference/articles/article934.asp
http://www.samugames.com/

2D Representation: Tiles - 3

● Here we have the eight tiles for Michael's
game's map. Terrains are arranged so that
there is a strict precedence.

● As Michael notes, “Precedence does not
reflect the relative elevations of the terrain but
is instead based on which terrains looks best
when overlapping other terrains.”

2D Representation: Tiles - 4

● 16 possible edge transitions, and 16 possible
corner transitions.

● We can combine the edge transitions with the
corner transitions to create all 256 (???)
possible transitions.

● Above are the transition templates.
– Top are edge transitions
– Bottom are corner transitions
– Black areas are transparent; grey are opaque

2D Representation: Tiles - 5

● An artist uses these transitions to create the
32 (30) terrain transitions – for each tile type.

● Many more extra tiles, but not exponentially
more.

2D Representation: Tiles - 6

● Drawing is a two-step process. For each cell
in your grid:
– Draw the base terrain
– Then draw any transition overlays, in reverse

order of precedence.

2D Representation: Tiles - 7
● Good results. Here's a before and after:

Heightmaps - 1
● Essentially a 2D array of pixels
● Normally in the range 0-255
● Black pixels are the lowest; light pixels the

highest
● Generally, we use a clouds filter in

Photoshop, plasma in the Gimp, Perlin Noise
or some such technique to create a noisy (but
smooth) image

● We translate each point in a grid by a factor
of the corresponding pixel in the image

Heightmaps - 2

Heightmaps, regularly-spaced grids and
triangle-based terrains

Can you spot the potential problem? (hint: think of jagged terrains)

Heightmaps, regularly-spaced grids and
triangle-based terrains

How should we triangulate this quad?

Heightmaps, regularly-spaced grids and
triangle-based terrains

There are a couple of solutions you could try:

- Allow your terrain editor to switch diagonals for a given
 quad

- Constrain all quads to be planar

Two possibilities:

Heightmaps, regularly-spaced grids and
triangle-based terrains

Heightmap limitations

● What kind of terrain formations can we not represent with a
simple heightmap?

Heightmap limitations

● What kind of terrain formations can we not represent with a
simple heightmap?

Also overhangs, “Devil's Tower”-type landforms, etc.

Heightmap limitations

● There are a few ways we can “solve” this problem:
– Only use heightmaps for the initial generation; then, sculpt

terrain as we see fit, and be sure not to do anything with the
terrain that requires 2D topology

– Treat these types of formations as non-terrain objects, which
we place on the terrain grid AFTER formation

– Apply “modifiers” to the terrain, which non-destructively
transform the geometry, late in the terrain pipeline

– Have a layer of, say, three heightmaps – the bottom one of
which is our base, the middle one a kind of “ceiling”
heightmap, and the top one another base. Intersections of
the heightmaps are the boundaries at which it changes
overhang to underhang, and vice versa.

● This won't work for bridge-under-a-bridge, though

Delaunay Triangulation

● We want to figure out a way to reduce the number of vertices
and triangles in our terrain mesh. We also want to reduce the
number of very thin “sliver” triangles in our mesh; probably we
can render the same scene with fewer, larger triangles.

● This is where Delaunay Triangulation becomes useful.
● Intuitively, Delaunay Triangulation takes a set of points and

triangulates them.
● http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

Delaunay Triangulation

● The Delaunay Triangulation, in a nutshell, is one in which every
edge has satisfied the Delaunay property. That is to say, the
circumcircle that contains the vertices of the edge and the other
one of the first triangle does not contain the opposing vertex
(and vice versa).

● Delaunay triangulations are unique.

Delaunay Triangulation

● Michael Garland and Paul S. Heckbert described an algorithm
that takes as input a heightmap and creates a Delaunay
triangulation for that heightmap. It is an iterative refinement
algorithm; we stop when the error is “small enough.”

● Greedy algorithm
● http://www.bowdoin.edu/~ltoma/teaching/cs350/spring04/Handouts/scape.pdf

http://www.bowdoin.edu/~ltoma/teaching/cs350/spring04/Handouts/scape.pdf

Delaunay Triangulation

Delaunay Triangulation

Delaunay Triangulation

Delaunay Triangulation

“Chips”

● Has many of the benefits of both tile-assembly and heightfield-
like surfacing

● Create a set of “chips” with a heightmap terrain tool. These
chips don't have to be square; they can be long, or L-shaped,
for example.

● Assemble the chips in another tool. Where chips meet, add
points (a la Delaunay, or Contrained Delaunay), and average
heights (or better yet, smooth across an area).

Terrain Autogeneration

● It's easier, and more realistic in many cases, to get the
computer to create the landscape for us

● These are often referred to as “fractal” terrain generation
● These techniques are especially useful for VERY BIG maps and

dynamic maps. For big maps, we might not have enough
resources to pay artists to create big worlds for us. For
dynamic maps – well, they're created at runtime!

● Especially for static maps, we can always tweak the map after
autogeneration with a 3D tool

Terrain Autogeneration – Fault Formation

● First, all cells of the heightmap to 0.
● Draw a line across the cell. Raise all cells on one side of the

line by a certain amount.
● Continue like this, drawing lines and raising one side – but with

each iteration, we decrease the amount by which we raise
● If we want a smoother terrain, no problem – just apply a smooth

(e.g. blur) filter

Terrain Autogeneration – Fault Formation

Terrain Autogen. – Midpoint Displacement

● For the 2D case: take a line segment and find its midpoint.
● Insert a vertex in that midpoint, and translate it up or down by

some random amount.
● Recursively apply the same procedure on the two new

(connected) line segments

Terrain Autogen. – Midpoint Displacement

● Continue until you reach a “sufficient level of detail”
● Useful for 2D autogeneration

Terrain Autogen. – Midpoint Displacement

● 3D is the same idea; we just operate and recurse on square
fragments of the map.

● The Diamond-square algorithm

Terrain Autogen. – Particle Deposition

● The idea is that we choose a point on the map and deposit
particles (that is, add to the heightmap) over and over again.

● Particles will “fall” to their neighbor – which neighbor is
randomly determined - if they can.

Terrain Autogen. – Particle Deposition

● We can occasionally move the point of deposition so as to not
create one big island or mountain

● We can also create calderas by treating deposits past a certain
threshold as subtractions in height rather than additions. These
subtractions are applied at the end (effectively inverting those
areas)

Terrain Autogen. – Particle Deposition

Terrain Autogeneration - Hills
http://www.robot-frog.com/3d/hills/hill.html

http://www.robot-frog.com/3d/hills/hill.html

Terrain Autogeneration – Cellular Automata
http://www.cs.ubc.ca/~van/GI2005/Posters/Wijaya_Callele_GI2005_Poster_Abstract.pdf

http://www.cs.ubc.ca/~van/GI2005/Posters/Wijaya_Callele_GI2005_Poster_Abstract.pdf

Terrain Autogeneration – Which is best?

● Which method is best?
● Well, there is no “best.” Different techniques produce different

results.
● Several techniques in concert (that is to say, in additive

sequence) can be used to get the best of all worlds

Terrain Autogeneration – Autotexturing

● We can get automatically texture terrain based on the features
of the terrain. One simple example might be:
– Region1(Snow) : 256-192
– Region2(Rock) : 192-128
– Region3(Grass): 128-64
– Region4(Sand) : 64-0

● At the boundaries, we blend between features
● As we'll see, programs like L3DT do this – and we can

configure which textures correlate to which heights

Terrain Autogeneration – Autotexturing

L3DT

● Very sophisticated autogenerator
● Very large maps possible
● Start with a “design map” - which you can alter – that serve as

seeds for the creation of terrain features
● Lots of realistic terrain-creation techniques; e.g. several types of

erosion (channeling erosion, thermal erosion, etc.); water table
(flooding) creation; normal creation; attribute creation; texture
creation... and more

● You can export all of these generated tables – e.g. as a BMP
● http://www.bundysoft.com/L3DT/

http://www.bundysoft.com/L3DT/

L3DT

Terragen

● Less sophisticated generation than L3DT, for example
● But, in-tool editing is supported
● As is a 3D renderer
● http://www.planetside.co.uk/terragen/

http://www.planetside.co.uk/terragen/

ROAM

● Real-time Optimally Adapting Meshes
● This is a way of reducing the number of triangles that we send

to the rendering pipeline.
● This algorithm belongs to a class of algorithms called Level of

Detail (LOD) algorithms
● LOD algorithms in a nutshell: render small, detailed triangles

CLOSE to the camera. Render large, rough triangles far away
from the camera.

● All triangles – once transformed to projection space - should
have about the same area

LOD

ROAM

● ROAM recursively partitions the landscape into pairs of
isosceles right triangles.

● The closer the camera is, the deeper we render.

ROAM

ROAM sample: http://www.gamasutra.com/features/20000403/turner_01.htm

ROAM

● Notice in the sample: we're sending more triangles to the
pipeline than we apparently need; e.g. triangles way outside of
the viewing volume. Why?

ROAM

● Notice in the sample: we're sending more triangles to the
pipeline than we apparently need; e.g. triangles way outside of
the viewing volume. Why?

● To avoid cracking.

Catmull-Clark Subdivision Algorithm

● Developed by E. Catmull (of Pixar) and J. Clark
● Non-destructive, geometry recursive subdivision and smoothing

algorithm
● Iterate until it looks “good enough”
● http://symbolcraft.com/graphics/subdivision/

http://symbolcraft.com/graphics/subdivision/

Catmull-Clark Subdivision Algorithm

● Let the original vertices denote the input vertices for our
algorithm (or iteration)

● First, calculate the center of each face. These are called the
face points.

● Create new edge points for each edge. Each new edge point
position is the average of three vertices: the position of the
midpoint of the original edge, and the position of the face point
for the two adjacent faces.

● Connect face points to edge points with new edges
● The positions of the original vertices are then recalculated as

the weighted average of the original vertices, the midpoints of
the edges that shared the old vertex, and the face points
surrounding the old vertex.

Catmull-Clark Subdivision Algorithm

