Networking for Computer Games

EECS 494
10/11/06 by Sugih Jamin

Networking in Games

In-game networking topics:

Machine 1 Machine 2
in game

Distributed Distributed (more in EECS 591/491)

Systems Systems

- W inSocks
e cheat pr()oﬁng Networking Networking | in library/kernel

(EECS 489)

 consistency

e socket programming

Consistency

Problem statement:

How do you differentiate the two cases,
at both playerl and player2?

Synchronization

Synchronization: order moves by their times of
occurrence

Assume globally synchronized clocks
Out-of-synch worlds are inconsistent

Small inconsistencies not corrected can lead to large
compounded errors later on (deer not speared means
one less villager means slower barrack build, etc.)

When to Render a Move?

How long do you have to wait for the other players'
moves before rendering your world?

Lock-step Protocol

Algorithm: Each player receives all other players’
moves before rendering next frame

Problems:
* long Internet latency

e variable latencies

« game speed determined by the slowest player

synchronize
moves and
render scene

Bucket Synchronization

Algorithm:
buffer both local and remote moves
play them in the future
each bucket 1s a turn, say for about 200 ms
bucket size can be adapted to measured rtt

Problems: Clayers

« game speed (bucket size)
determined by slowest player

 what if a move is lost or late? _— > ,,

... synch moves
and render scene

a player can have
multiple moves
per turn

Pessimistic Consistency

Every player must see the EXACT same world
AoE/AoK/AoM:

 each player simulates i1ts own copy of the world
all the worlds must be in sync.
uses bucket synchronization
cach player sends moves to all other players
dropped packets retransmitted

a designated host collect measured rtts from all
players and set future bucket sizes

Problems:
e variable latencies

» speed determined by the slowest player

Dead Reckoning

Dead reckoning, a.k.a. client-side prediction
extrapolate next move based on prior moves

compute the velocity and acceleration of objects to
dead reckon

players can help by sending this info along

obviously, only works 1f velocity and acceleration
haven't changed

move lost or late,
dead reckoned

Roll-back

In case of inconsistency:
server always have authoritative view

when clients correct inconsistent views,
players may experience = warping"

can players' decisions be dead reckoned?
(see)

Optimistic Consistency with Roll-back

Observation: dead reckoning doesn't have to be limited to
lost packets!

Half-Life:

each client plays back its own moves immediately and send the
moves to server

each client also dead reckons the other players’ moves

server computes world and sends its authoritative version to all
clients

clients reconcile dead reckoned world with server's version
can result in some jerkiness and perception of “shooting around

only need to synchronize important events, but must be careful
that dead reckoning error doesn't get compounded over time

Shooting around Corner

Consistency: Correctness

For consistency ALL user mput
MUST pass through the
synchronization module

Be careful with random number
generators. Isolate the one used
for game-state updating from
other uses (ambient noise etc.)

Design for multiplayer from the
start. Single-player becomes a
special case of single-client
multiplayer game

inthalizahon

Receive Remote
Player(s) Input

%0 bulter

'
Copy buffer to
display

L
ocal Player
inpul
Send »

Local input
'

Main Log
consistency

Consistency: Smoothness

For smoother playback, decouple bucket size from frame rate
(even AoE does this)

Immediately render local moves

Modify game design to allow for latency and loss, e.g.,
* make players wait for elevator

* teleportation takes time

e require multiple hits per kill

* let bullet/missile have flying time

* build 1n 1nertia, don't allow sudden change 1n facing

Reducing Consistency Check

Do area-of-interest management (a.k.a. relevance filtering):

 aura: how far you can be sensed (cloaked ships have € aura)

* nimbus: how far you can sense (use quantum-sensor to detect
cloaked ships)

Aura and nimbus are defined for a given set of " technology”
(e.g., cloaking device, quantum sensor, etc.)

Perform consistency check only when B 1s within A's nimbus
and A 1s within B's aura

Cheating

AoE doesn't need cheat-proofing because each player simulates
cach move 1n lock step: all moves are simulated, not just
collisions

Half-Life synchronizes only collisions, higher probability for
cheating

Cheats (more at megagames.com):

 superhuman cheat: auto-aim, auto-position

« game-state editing: boost player's profile

* rule bending: see/walk through walls

* sixth-sense cheat

* lookahead cheat: claim to be behind slow link

* suppress-correct cheat: exploit dead-reckoning, claim moves were lost, then
“reconstruct” advantageous moves based on others' moves

[.ookahead Cheat

Player C Player H Player C Player H

a) C is an hones! player b) C is a cheater
150ms from H 50ms from H claiming to
be 150ms from H

Suppress Correct Cheat

At time 150, C sends out a move consistent with fake
moves at time 0, 50, 100 that were actually computed
upon receiving packets from A

Player C Player H

Distributed Computing Model

Two common models:
* Distributed Objects
* Message Passing

Both implemented as abstractions over the socket APIs:

« Distributed Objects: object update library
sends/recelves object states using socket APIs

* Message Passing: player inputs sent/received using
sockets

Socket Programming

What 1s a socket?

How to use socket for client-server computing?

