
Networking for Computer Games

EECS 494
10/11/06 by Sugih Jamin

Networking in Games
In-game networking topics:
• networking topology: client-server vs. peer-to-peer
• computing model: distributed object vs. message

passing
• which protocol to use? tcp, udp, reliable udp
• bandwidth limitation
• latency limitation
• consistency
• cheat proofing
• socket programming

Consistency
Problem statement:

Case 1

Case 2

How do you differentiate the two cases,
at both player1 and player2?

Synchronization
• Synchronization: order moves by their times of

occurrence
• Assume globally synchronized clocks
• Out-of-synch worlds are inconsistent
• Small inconsistencies not corrected can lead to large

compounded errors later on (deer not speared means
one less villager means slower barrack build, etc.)

When to Render a Move?
How long do you have to wait for the other players'

moves before rendering your world?

Lock-step Protocol
Algorithm: Each player receives all other players’

moves before rendering next frame
Problems:
• long Internet latency
• variable latencies
• game speed determined by the slowest player

Bucket Synchronization
Algorithm:
• buffer both local and remote moves
• play them in the future
• each bucket is a turn, say for about 200 ms
• bucket size can be adapted to measured rtt

Problems:
• game speed (bucket size)

determined by slowest player
• what if a move is lost or late?

Pessimistic Consistency
Every player must see the EXACT same world
AoE/AoK/AoM:
• each player simulates its own copy of the world
• all the worlds must be in sync.
• uses bucket synchronization
• each player sends moves to all other players
• dropped packets retransmitted
• a designated host collect measured rtts from all

players and set future bucket sizes
Problems:
• variable latencies
• speed determined by the slowest player

Dead Reckoning
Dead reckoning, a.k.a. client-side prediction
• extrapolate next move based on prior moves
• compute the velocity and acceleration of objects to

dead reckon
• players can help by sending this info along
• obviously, only works if velocity and acceleration

haven't changed

Roll-back
In case of inconsistency:
• server always have authoritative view
• when clients correct inconsistent views,

players may experience ``warping''
• can players' decisions be dead reckoned?

(see http://spectrum.ieee.org/sep06/4424)

Optimistic Consistency with Roll-back
Observation: dead reckoning doesn't have to be limited to

lost packets!
Half-Life:
• each client plays back its own moves immediately and send the

moves to server
• each client also dead reckons the other players’ moves
• server computes world and sends its authoritative version to all

clients
• clients reconcile dead reckoned world with server's version
• can result in some jerkiness and perception of “shooting around

corner”
• only need to synchronize important events, but must be careful

that dead reckoning error doesn't get compounded over time

Shooting around Corner

X

Consistency: Correctness
For consistency ALL user input

MUST pass through the
synchronization module

Be careful with random number
generators. Isolate the one used
for game-state updating from
other uses (ambient noise etc.)

Design for multiplayer from the
start. Single-player becomes a
special case of single-client
multiplayer game

Consistency: Smoothness

For smoother playback, decouple bucket size from frame rate
(even AoE does this)

Immediately render local moves

Modify game design to allow for latency and loss, e.g.,
• make players wait for elevator
• teleportation takes time
• require multiple hits per kill
• let bullet/missile have flying time
• build in inertia, don't allow sudden change in facing

Reducing Consistency Check

Do area-of-interest management (a.k.a. relevance filtering):
• aura: how far you can be sensed (cloaked ships have ε aura)
• nimbus: how far you can sense (use quantum-sensor to detect

cloaked ships)

Aura and nimbus are defined for a given set of ``technology'’
(e.g., cloaking device, quantum sensor, etc.)

Perform consistency check only when B is within A's nimbus
and A is within B's aura

Cheating
AoE doesn't need cheat-proofing because each player simulates

each move in lock step: all moves are simulated, not just
collisions

Half-Life synchronizes only collisions, higher probability for
cheating

Cheats (more at megagames.com):
• superhuman cheat: auto-aim, auto-position
• game-state editing: boost player's profile
• rule bending: see/walk through walls
• sixth-sense cheat
• lookahead cheat: claim to be behind slow link
• suppress-correct cheat: exploit dead-reckoning, claim moves were lost, then

``reconstruct'’ advantageous moves based on others' moves

Lookahead Cheat

Suppress Correct Cheat

At time 150, C sends out a move consistent with fake
moves at time 0, 50, 100 that were actually computed
upon receiving packets from H

Distributed Computing Model
Two common models:
• Distributed Objects
• Message Passing

Both implemented as abstractions over the socket APIs:
• Distributed Objects: object update library

sends/receives object states using socket APIs
• Message Passing: player inputs sent/received using

sockets

Socket Programming
What is a socket?

How to use socket for client-server computing?

