
Networking Multiplayer Games

EECS 494
10/09/06 by Sugih Jamin

Multiplayer Games
Why multiplayer games?
• humans are better at most strategy than current AIs
• humans are less predictable
• can play with people, communicate in natural

language
• add social aspect to computer games
• provides larger environments to play in, with more

characters
• make money as a professional game player

People Online
http://www.websiteoptimization.com/bw/

Two Types of Multiplayer Games
• Head-to-head death-match:

• fast-pace, intense interaction/combat
• no persistent state
• players form ad-hoc, short-lived sessions
• any client can be a server
• requires matchmaking service:built-in lobby or use

GameSpy
• examples: X/NetTrek (1980s, simulation), Doom

(1990s, FPS), Counter-Strike, StarCraft, AoE, etc.
(RTS-combat)

• Persistent-world, massively multiplayer online
game (MMOG)

MMOG
Most MMOGs are MMORPGs:
• server(s) keep persistent states, players can drop

in anytime
• traditionally emphasize social interaction (less

combat, but changing
• in the beginning: MUD/MOO (1978, text-based)
• first commercial titles: Meridian 59 (c. 1996) and

others, together had <= 30,000 players

MMORPGs
Ultima Online (Origin Systems/EA, gold

Sept. 27, 97):
• isometric view
• took 3 years to developed
• >100,000 players in 1998, 240,000

players in 2001, 225,000 in Apr. 2003

Everquest (Verant/Sony, gold Mar. 16,
1999):

• first non-wireframe 3D entry,
• 300,000 players in 2000, 430,000 in 2002
• total revenue: $4 mil/month (BW, 11/9/01)

Second Most Popular MMORPG
NCSoft's Lineage and Lineage II:
• S. Korea (Sept. 1998)
• 4 million players in 2003, 110,000

concurrent players!
• Population of S. Korea: 50 million
• Population of Seoul: 10 million

• Lineage II (3D) developed by
UO's/Destination Games’ Richard
Garriott (released Oct. 1, 2003)

• in the first 4 days: 130,000 players,
90,000 concurrent

• Most popular till July 05

An Analysis of MMOG
Subscription Growth
http://www.mmogchart.com/

Networking in Games
Differentiate between in-game networking and backend

infrastructure
Backend infrastructure:
• lobby where gamers meet
• authentication and CD key checking
• accounting and billing
• ranking and ladder
• reputation and black list
• buddy lists, clans, and tournaments
• mods and patches management
• virtual economy
• beware of DDoS

Issues: scalability, adapting to failure, security

Networking in Games
In-game networking topics:
• networking topology: client-server vs. peer-to-peer
• computing model: distributed object vs. message

passing
• which protocol to use? tcp, udp, reliable udp
• bandwidth limitation
• latency limitation
• consistency
• cheat proofing
• socket programming

Peer-to-peer
• Peer-to-peer with O(N2) unicast connections:
• each player is connected directly to all other players
• each player simulates the whole world
• advantages: reduced latency, no single point of failure
• disadvantages: easier to cheat, not scalable: each client

must send and receive N-1 messages
• used in Age of Empire

Client-server
Two flavors:
• ad-hoc servers: death match
• dedicated servers: MMOG
Two types of clients:
• clients simulate world, server has authoritative state:

allows for client-side dead reckoning (QuakeIII/Half-
Life)

• clients for I/O, all simulations at server: useful for thin
clients, e.g., cell phones, and persistent-world MMOG

Client-server
Advantages:
• each client sends only to server,

server can aggregate moves
• With dedicated servers: cheat-

proofing, server can be better
provisioned, persistent states (for
MMOG)

Disadvantages: longer delay, server
bottleneck, single point of failure,
needs server management

MMOG Server Architecture 1
• The world replicated at each server (shard)
• each shard contains an independent world
• players go to specific shard

Most MMORPG

MMOG Server Architecture 2
• The world replicated at each server (mirror)
• all the worlds are synchronized
• players see everyone across all mirrors

Mirrors must be kept consistent

MMOG Server Architecture 3
• The world is split up into regions
• each region is hosted by a different server
• Example: Second Life
Servers must be kept consistent

Distributed Computing Model
Usually your game company will have its

preferred computing model and would
provide high-level libraries to implement
the model

Two common models:
• Distributed Objects
• Message Passing

Distributed Computing Model
Distributed objects:
• characters and environment

maintained as objects
• player inputs are applied to

objects (at server)
• changes to objects

propagated to all players at
end of game loop

• object update usually
implemented as one or
more library calls

Distributed Computing Model
Message passing:
• player inputs (either button

pushes or higher-level
movements) are sent to other
players (or server)

• all players update their own
game state

• or server updates the global
game state and send it out to
all players

Which Protocol to Use?
Protocol Layers

TCP vs. UDP
IP routes packet from source to destination,
max IP packet size is 64 KB, may be fragmented

What TCP (Transmission Control Protocol) gives you:
• reliable delivery
• retransmission and reordering
• congestion control

What UDP (User Datagram Protocol) gives you:
• unreliable delivery
• no retransmission, packets not ACKnowleged, no reordering
• no congestion control
• more or less, plain IP service

Which Protocol to Use?
Game requirements:
• late packets may not be useful anymore
• lost information can sometimes be interpolated
• but loss statistics may be useful

Use UDP in game:
• can prioritize data
• can perform reliability if needed
• can filter out redundant data
• use soft-state
• send absolute values, not deltas
• or if deltas are used, send ``baseline'' data periodically
• must do congestion control if sending large amount of data

Reliable UDP
UDP doesn't provide reliability, write your own reliable udp for
moves that must be reliable, e.g., snipper shots

Desirable features:
• error control: do checksum
• ordering: use sequence #
• reliability: acknowledge packet

(use cumulative ACK),
retransmit if not ACKed, timeout
value a function of average rtt
(round-trip time)

• flow control: don't send more than
the target can handle; use stop-
and-wait or sliding-window

Bandwidth Limitation
What is bandwidth?

What information is sent?
• depends on your computing model: distributed object or

message passing
• game state: coordinates, status, action, facing, damage
• user keystrokes
• commands/moves
 For AoE: 1 every 1.5-2 sec, up to 3-4 commands/sec

during battles (but some of these are redundant and can
be filtered out)

Current lower limit assumed: 56 Kbps

Bandwidth Limitation

Bandwidth requirement has been HIGHLY optimized
Even with audio chat, takes up at most 8 Kbps

So, bandwidth is not a big issue (but note
the asymmetric nature: at 8 Kbps, you can only
support a total of 4 players on a 28.8 Kbps modem)

Must be continually vigilant against bloat

HOWEVER, with player-created objects and worlds,
bandwidth becomes an issue again: use streaming,
levels of details, and pre-fetching

Latency Limitation

How is latency different from bandwidth?

Latency:
• RTS: <= 250 ms not noticable, 250-500 ms playable,

> 500 ms noticable
• FPS: <= 150 ms preferred
• Car racing: < 100 ms preferred, 100-200 ms sluggish,

>= 500 ms, car out of control
• Players' expectation can adapt to latency
• It is better to be slow but smooth than to be jittery
• Don't rely on DirectPlay---at least test for its

limitations

