
Basic Game Physics

John E. Laird and Sugih Jamin
Based on The Physics of the Game, Chapter 13 of Teach

Yourself Game Programming in 21 Days,
pp. 681-715

Why Physics?
• Some games don’t need any physics
• Games based on the real world should look realistic,

meaning realistic action and reaction
• More complex games need more physics:

• sliding through a turn in a racecar, sports games, flight simulation, etc.
• Running and jumping off the edge of a cliff

• Two types of physics:
• Elastic, rigid-body physics, F = ma, e.g., pong
• Non-elastic, physics with deformation: clothes, pony tails, a

whip, chain, hair, volcanoes, liquid, boomerang

• Elastic physics is easier to get right

Game Physics
• Approximate real-world physics
• We don’t want just the equations
• We want efficient ways to compute physical values

• Assume fixed discrete simulation – constant time step
• Must account for actual time passed for variable simulation

• Assumptions:
• 2D physics, usually easy to generalize to 3D (add z)
• Rigid bodies (no deformation)
• Will just worry about center of mass

• Not accurate for all physical effects
• Constant time step

Position and Velocity
• Modeling the movement of objects with velocity

• Where is an object at any time t?
• Assume distance unit is in pixels

• Position at time t for an object moving at velocity
v, from starting position x0:
• x(t) = x0 + vx t
• y(t) = y0 + vy t

• Incremental computation per frame, assuming
constant time step and no acceleration:
• vx and vy constants, pre-compute
• x += vx, y += vy

vy

vx

(x0, y0)

v: velocity

Acceleration
• Acceleration (a): change in velocity per unit time

Acceleration

Velocity

Approximate

Acceleration

• Constant acceleration: vx += ax, vy += ay

• Variable acceleration:
• use table lookup based on other factors:
• acceleration = acceleration_value(gear, speed, pedal_pressure)

• Cheat a bit: acceleration = acceleration_value(gear, speed) * pedal_pressure
• ax = cos (v) * acceleration
• ay = sin (v) * acceleration

• Piece-wise linear approximation to continuous functions

Gravity
• Gravity is a force between two objects:

• Force F = G (m1m2)/ D2

• G = 6.67 x 10-11 Nm2kg-2

• mi: the mass of the two objects
• D = distance between the two objects

• So both objects have same force applied to them
• F=ma --> a=F/m

• On earth, assume mass of earth is so large it doesn’t
move, and D is constant
• Assume uniform acceleration
• Position of falling object at time t:

• x(t) = x0
• y(t) = y0 + 1/2 * 9.8 m/s2 * t2

• Incrementally, y += gravity (normalized to frame rate)

Space Game Physics
• Gravity

• Influences both bodies
• Can have two bodies orbit each other
• Only significant for large mass objects
• Consider N-body problem

• What happens after you apply a force to an object?
• What happens when you shoot a missile from a

moving object?
• What types of controls do you expect to have on a

space ship?
• What about a flying game?

Mass
• Objects represented by their center of mass, not

accurate for all physical effects
• Center of mass (xc, yc) for a polygon with n vertices:

• Attach a mass to each vertex
• xc = Σ ximi/Σ mi, i = 0 .. n
• yc = Σ yimi/Σ mi, i = 0 .. n

• For sprites, put center of mass where pixels are densest
• For arcade games, model gravity in sprite frames:

Friction
• Conversion of kinetic energy into heat
• Frictional force Ffriction = m g µ

• m = mass, g = 9.8 m/s2,
• µ = frictional coefficient = amount of force to maintain a constant speed

• Factual = Fpush - Ffriction
• Careful that friction doesn’t cause your object to move backward!
• Consider inclined plane

• Usually two frictional forces
• Static friction when at rest (velocity = 0). No movement unless overcome.
• Kinetic friction when moving (µk < µs)

mass(m)

µm*g

Fpush Ffriction

Race Game Physics
• Non-linear acceleration
• Resting friction > rolling friction
• Rolling friction < sliding friction
• Centripetal force?

• What controls do you expect to have for a racing game?
• Turning requires forward motion!

• What about other types of racing games
• Boat?
• Hovercraft?

Projectile Motion
• Forces

θ: angle of inclination

g: gravity

m: mass of projectile

W: wind
Wr: wind resistance

vi = initial velocity

vix = vi cos(θ)

viy = vi sin(θ)

Reaches apex at t = vi sin(θ)/g,
hits ground at x = vix * viy/g

With wind:

x += vix + W

y += viy

With wind resistance and gravity:

vix += Wrx

viy += Wry + g, g normalized

Particle System Explosions
• Start with lots of point objects (1-4 pixels)

• Initialize with random velocities based on velocity of
object exploding

• Apply gravity

• Transform color intensity as a function of time

• Destroy objects upon collision or after fixed time

• Can add vapor trail (different color, lifetime, wind)

Advanced Physics
• Modeling liquid (Shrek,

Finding Nemo)
• Movement of clothing
• Movement of hair

(Monster Inc.)
• Fire/Explosion effects
• Reverse Kinematics

Physics Engines
• Havok, AGEIA PhysX, Tokamak, etc.
• Strengths

• Do all of the physics for you as a package

• Weaknesses
• Can be slow when there are many objects (use PPU?)
• May have trouble with small vs. big object interactions
• Have trouble with boundary cases

Source: AGEIA

Back to Collisions
• Steps of analysis for different types of collisions

• Circle/sphere against a fixed, flat object
• Two circles/spheres
• Rigid bodies
• Deformable

• Model the simplest - don’t build a general engine

Collisions: Steps of Analysis
• Detect that a collision has occurred
• Determine the time of the collision

• So can back up to point of collision

• Determine where the objects were at time of collision
• Determine the collision angle off the collision normal
• Determine the velocity vectors after collision
• Determine changes in rotation

Circles and Lines
• Simplest case

• Good step for your games - pinball
• Assume circle hitting an immovable barrier

• Detect that a collision occurred
• If the distance from the circle to the line < circle radius
• Reformulate as a point about to hit a bigger wall
• If vertical and horizontal walls, simple test of x, y

r

r

Circles and Angled Lines
• What if more complex background: pinball?

• For complex surfaces, pre-compute and fill an array with
collision points (and surface normals)

Circle on Wall Collision Response
• Determine the time of collision (tc):

• tc = ti + (xh-x1)/(x2-x1)*Δt
• ti = initial time
• Δt = time increment

• Determine where the objects are when they touch
• yc = y1- (y1-y2) * (tc-ti)/Δt

• Determine the collision angle against collision normal
• Collision normal is the surface normal of the wall in this case
• Compute angle of line using (x1-xh) and (y1-yc)

x1,y1

x2,y2

xh

collision normal

Circle on Wall Collision Response
• Determine the velocity vectors after collision

• Angle of reflectant = angle of incidence; reflect object at an
angle equal and opposite off the surface normal

• If surface is co-linear with the x- or y-axes:
• Vertical - change sign of x velocity
• Horizontal - change sign of y velocity
• Corner - change sign of both

• Compute new position
• Use Δt - tc to calculate new position from collision point

• Determine changes in rotation
• None!

• Is this worth it? Depends on speed of simulation, …

Circle-circle Collision
• Another important special case

• Good step for your games
• Many techniques developed here can

be used for other object types

• Assume elastic collisions:
• Conservation of momentum
• Conservation of kinetic energy

• Non-elastic collision converts
kinetic energy into heat and/or
mechanical deformations

Detect that a collision occurred
• If the distance between two circles is less than the sum of

their radii
• Trick: avoid square root in computing distance!
• Instead of checking (r1+r2) > D, where D = sqrt((x1-x2)2 + (y1-y2)2)
• Check (r1 + r2)2 > ((x1-x2)2 + (y1-y2)2)

• Unfortunately, this is still O(N2) comparisons, N number of
objects

x1, y1

x2, y2

r2
r1 D

Detect that a collision occurred
• With non-circles, gets more complex and more

expensive for each pair-wise comparison
• Use bounding circles/spheres and check for overlap

• Pretty cheap
• Not great for thin objects

Avoiding Collision Detection
• General approach:

• Observations: collisions are rare
• Most of the time, objects are not colliding

• Use various filters to remove as many objects as possible
from the comparison set

Area of Interest
• Avoid most of the calculations by using a grid:

• Size of cell = diameter of biggest object
• Test objects in cells adjacent to object’s center

• Can be computed using mod’s of objects coordinates:
• bin sort

• Linear in number of objects

Detect that a collision occurred
• Alternative if many different sizes

• Cell size can be arbitrary
• E.g., twice size of average object

• Test objects in cells touched by object
• Must determine all the cells the object touches
• Works for non-circles also

Circle-circle Collision Response
• Determine the time of the collision

• Interpolate based on old and new
positions of objects

• Determine where objects are when
they touch
• Backup positions to point of collision

• Determine the collision normal
• Bisects the centers of the two circles

through the colliding intersection

collision “surface”

collision normal

Circle-circle Collision Response
• Determine the velocity: assume elastic, no

friction, head on collision
• Conservation of Momentum (mass * velocity):

• m1v1 + m2v2 = m1v’1 + m2v’2

• Conservation of Energy (Kinetic Energy):
• m1v1

2 + m2v2
2 = m1v’1

2 + m2v’2
2

• Final Velocities
• v’1 = (2m2v2 + v1(m1-m2))/(m1+m2)
• v’2 = (2m1v1 + v2(m1-m2))/(m1+m2)

• What if equal mass, m1 = m2
• What if m2 is infinite mass?

Circle-circle Collision Response
For non-head on collision, but still no friction:
• Velocity change:

• Maintain conservation of momentum
• Change of velocity reflect against the collision normal

collision “surface”

Must be careful
• Round-off error in floating point arithmetic can throw

off computation
• Careful with divides

• Especially with objects of very different masses

Avoiding Physics in Collisions
• For simple collisions, don’t do the math

• Two identical balls swap velocities

• For collisions between dissimilar objects
• Create a collision matrix

side

brick

paddle

ball

bottom

