
Arcade Games:
2D Bit-mapped Graphics

John Laird and Sugih Jamin
September 11, 2006

2D Graphics

• Most 2D games use sprite
instead, but basic primitives
applicable in 3D graphics

• Points
• x,y

• Lines
• Two points
• Draw by drawing all points

in between
• Low-level support for this in

hardware or software

4,4

-2,-1

Coordinate System
(0,0)

+y

+x

(120,120)

Polygons
• Defined by vertices
• Closed: all lines connected
• Draw one line at a time
• Can be concave or convex
• Basis for many games
• Basis for 3D graphics (triangle)

• Required data:
• Position: x, y
• Number of vertices
• List of vertices
• Color (shading)

moveto(100,100)
lineto(100,300)
lineto(500,300)
lineto(500,100)
lineto(100,100)

100,100

Operations on Polygon
• Translation: moving
• Scaling: changing size
• Rotation: turning
• Clipping and scrolling

Translation: Moving an Object
• To move an object, just add in changes to position:

• x = x0 + dx
• y = y0 + dy

• If have motion, the dx and dy are the x and y
components of the velocity vector.

Velocity Vector: V

x0, y0
dx = cos v

dy = sin v

Positioning an object
• Problem: If we move an object, do we need to change

the values of every vertex?

Triangle location: 4,0
P1: 0, 1
P2: -1, -1
P3: 1, -1

P1

P3P2

• Solution: change frame of reference
• World coordinate system for object positions

• coordinates relative to screen
• Local coordinate system for points in object

• coordinates relative to the position of the object (frame of reference)

Scaling: Changing Size
• Multiply the coordinates of each vertex by the scaling

factor.
• Everything just expands from the center.
• object[v1].x *= scale

• object[v1].y *= scale

Rotation: Turning an Object
• Spin object around its center in the z-axis.
• Rotate each point the same angle

• Positive angles are clockwise
• Negative angles are counterclockwise

• x = x0 * cos(angle) - y0 * sin(angle)

• y = y0 * cos(angle) + x0 * sin(angle)

• Note: angle measured in radians not degrees!

Matrix Operations

• Translation, rotation, scaling can all be collapsed into
matrix operations:

• Translation:

• Scaling:

• Rotation:

 1 0 0

 0 1 0

dx dy 1

x y 1 *

sx 0 0

0 sy 0

0 0 1

cos -sin 0

sin cos 0

0 0 1

sx, sy =
scaling valuesx y 1 *

x y 1 *

Putting it all together

sx*cos -sx*sin 0

sy*sin sy*cos 0

dx dy 1

x y 1 *

Common Problems: Flicker and
Tearing

• Video update slower than display
• Change video buffer during updating
• Solution:

• Double buffering -- write to a “virtual screen” that isn’t
being displayed.

• Either BLT buffer all at once, or switch pointer.

Video
Buffer

Backup
Buffer

Video Pointer

Frame 1 Frame 2 Displayed

Clipping
• Display the parts of the objects on the screen

• Can get array out of bound errors if not careful
• Easy for sprites – done in DirectX

• Approaches:
• Border vs. image space or object space

Image Space vs. Object Space
• Image space:

• What is going to be displayed
• Primitives are pixels
• Operations related to number of pixels

• Bad when must do in software
• Good if can do in parallel in hardware – have one “processor”/pixel

• Object space:
• Objects being simulated in games
• Primitives are objects or polygons
• Operations related to number of objects

Border Clipping
• Create a border that is as wide as widest object

• Only render image, not border
• Restricted to screen/rectangle clipping
• Still have to detect when object is outside border
• Requires significantly more memory

Image Space Clipping
• Image Space:

• The pixel-level representation of the complete image.

• Clipping
• For each pixel, test if it is inside the visible region
• If buffer is 320x200, test 0-319 in x, 0-199 in y.

• Evaluation
• Easy to implement
• Works for all objects: lines, pixels, squares, bit maps
• Works for subregions
• Expensive! Requires overhead for every point rendered if done in software
• Cheap if done in hardware (well the hardware cost something)

Object Space Clipping
• Object space:

• Analytical representation of lines, polygons, etc.

• Clipping
• Change object to one that doesn’t need to be clipped (e.g.,

shorten the line)
• New object is passed to render engine without any testing

for clipping

• Evaluation
• Usually more efficient than image space software

• But hardware support of image space is fast
• Need different algorithm for different types of objects

• Lines are easy. Concave objects are problematic
• Usually just worry about bitmaps

Line Clipping Cases

1

2 3

4

Arcade Games
• Examples

• Missile Command, Space Invaders, Breakout, Centipede,
Pac-Man, Frogger, Tempest, Joust,

• Important Traits:
• Easy-to-learn – simple controls
• Move objects around the screen
• Single-screen – or simple scrolling
• Infinite Play
• Multiple Lives
• Scoring – highest score
• Little to no story

Game Loop

Initialization Overall Game
Control

Exit

wait

Game Session
Control

Player Input

Main Logic
• Physics
• Game AI
• Collision Processing

Render scene
to buffer

Copy buffer to
display

Time sync

1 cycle/frame

Static Objects
• Background, frame, fixed building, maze structure, …
• Draw only once
• Can be very complex

Background

Buffer

Screen

Buffer

Screen

Dynamic Objects: Sprites

Usually small number of pixels
Most be draw on screen 30 times/second

• Save background that sprite covers

• Player’s Sprite
• Paddle, gun, tank, …
• User can move it, turn, shoot, …

• Game Sprites
• All of the other objects in the game that move
• Bullets/missiles shot by player

• Most common interaction is collision
• Fast collision detection is important

Sprites:
• Object that moves around, displayed as a bit map

• NxM pixels:12 x 12 = 144. 100 x 100 = 10,000.
• Displayed on a background

Sprite Data

• Static
• Size
• Image sets
• Weapons, shields, worth, ...

• Dynamic
• Position
• Velocity
• Pose
• Current image
• Strength, health, ...
• Saved background

Creating Sprites

• Create Sprite in 2D or 3D drawing package
• 2D

• Gimp
• Photoshop
• Corel’s Paint Shop Pro (was JASC) or Painter (was Fractal Design)

• 3D
• Blender 3D
• Milkshape 3D
• 3D Studio Max
• Maya

• Save as file

Drawing the Sprite
• Some parts of the sprite are transparent

• Use a special code (255) to be transparent
• When drawing the pixels, don’t copy that code
• Is expensive because done for every pixel

• Some sprites have no transparencies
• Can have separate draw function
• Avoid test for transparency

Sprite Movement and Display
• Compute new position of Sprite
• If Sprite moved, erase Sprite by restoring saved background
• Save background where Sprite will go
• Draw Sprite

Run-Length Encoding
• Compress Sprites in files using “run-length encoding” (RLE).

• Instead of representing every pixel, encode number of consecutive
pixels of same kind in a row

• Big win if lots of same color in a row (transparent)
• Doesn’t capture vertical or 2D structure well.

• Not so good:

• Much better:

Long runs of same color

12 11 1 1 9

Sprite Scaling

• Used to show change in depth (distance)
• Options:

• Dynamic computation
• Can lead to very blocky pictures when they get big

• Pre-store different sizes
• Hard to get large numbers of intermediate sizes

• Pre-store different sizes for major size changes: x2
• Dynamically compute intermediate sizes

• Supported in Direct-X (in hardware and software)

Depth
• Can fake depth by scaling but what if overlap?

• Want closer objects to cover distant objects
• Associate depth with each Sprite - usually small number

• Image space solution
• Maintain shallowest depth rendered
• Add pixel if closer than previous
• Lots of work at each pixel if in software
• Hardware Z-buffer to rescue - standard for game machines

• Object space solution
• Sort objects by depth

• O(#_of_objects * log(#_of_objects))
• Draw back to front

Sprite Rotation

• Store each orientation as a separate bit map
• 16 different pictures is reasonable start

• Pick the closest one to the current orientation

• Calculating from scratch usually too slow
• Sometimes supported by hardware

Sprite Animation
• Changes in the display as state of object changes

• Example: standing, sitting, jumping, singing, shooting

• Choose the current bit-map based on object state
• Might require separate timer for animation changes

• Storage if including rotation
• #_of_bitmaps = #_of_angles * #_of_states

Semi-static Objects
• Rarely changes, doesn’t move
• Examples: Walls that can be damaged
• Change drawing on screen or buffer
• Not worth redrawing every cycle
• Do not have to save background

Buffer

Screen

Score 14

Dynamic Background
• If the background is scrolling or changing a lot

• Redraw complete buffer from scratch
• Avoid saving background for sprites
• More drawing

• Either
• Draw from back to front
• Draw using z-buffer or z-list

Scrolling - simple

screen

Horizontal scrolling: usually side view of world

Scrolling - simple

Vertical scrolling: usually top view of world

Scrolling – Tile Based
Tile map

screen

Scrolling – Sparse
• Object-based

• Keep list of objects with their positions
• Each time render those objects in current view
• Go through list of object – linear in # of objects

• Grid-based
• Overlay grid with each cell having a list of objects
• Only consider objects in cells that are in view

Collision Detection
• Image Space:

• Pixel by pixel basis. Expensive.

• Object Space:
• Hard for complex and concave spaces:

• Standard Approach:
• Cheat!
• Create a bounding box or circle

• test each vertex to see in another object
• Hide this by making your objects boxy
• Don’t have objects like:

• Can use multiple bounding shapes and bounding
areas

Sprite Collisions
• Easiest:

• Use the bounding box that includes all the pixels
 Test if vertex of one in
 bounding box of other

• Tricky:
• Use something a little smaller to avoid some fake collisions
• If things happen fast enough, people can’t tell

• Almost right but expensive:
• Test if non-transparent pixels overlap
• Can still miss some cases...

Collision?

Be extra careful if variable time step is used in game loop

