Arcade Games:
2D Bit-mapped Graphics

John Laird and Sugih Jamin
September 11, 2006

2D Graphics

Most 2D games use sprite
instead, but basic primitives
applicable 1n 3D graphics

Points
¢ Xy
Lines
* Two points
* Draw by drawing all points
in between

* Low-level support for this in
hardware or software

Coordinate System

(120,120)

Polygons

Defined by vertices
Closed: all lines connected

Draw one line at a time 100,100

Can be concave or convex
Basis for many games

Basis for 3D graphics (triangle)

Required data:
e Position: X, ¥ . moveto (100,100)
« Number of vertices lineto (100, 300)
e List of vertices lineto (500, 300)
()
()

. lineto (500,100
» Color (Shadlng) lineto (100,100

Operations on Polygon

Translation: moving
Scaling: changing size
Rotation: turning

Clipping and scrolling

Translation: Moving an Object

 To move an object, just add in changes to position:
* X=X, Tdx
* Y=YoTay
 If have motion, the dx and dy are the X and y
components of the velocity vector.

Velocity Vector: V

», dx = cos v

Positioning an object

* Problem: If we move an object, do we need to change
the values of every vertex?

e Solution: change frame of reference

* World coordinate system for object positions
 coordinates relative to screen

* Local coordinate system for points in object
 coordinates relative to the position of the object (frame of reference)

L P1 Triangle location: 4,0
P1l: 0 ’
| | A P2: -1,

- P3: 1,
P2 P3

Scaling: Changing Size

Multiply the coordinates of each vertex by the scaling
factor.

Everything just expands from the center.
e Object[vl].x *= scale

e Object[vl].y *= scale

g

Rotation: Turning an Object

* Spin object around its center in the z-axis.

» Rotate each point the same angle
* Positive angles are clockwise
* Negative angles are counterclockwise

* X = X, * cos(angle) - y, * sin(angle)

* y =y, *¥ cos(angle) + x, * sin(angle)

* Note: angle measured in radians not degrees!

Matrix Operations

Translation, rotation, scaling can all be collapsed into
matrix operations:

Translation:

Scaling:
sSxX, Sy =
scaling values

Rotation:

Putting 1t all together

sx*cos -sx*sin

sy*sin sy*cos

dx dy

Common Problems: Flicker and

Tearing
« Video update slower than display . ‘

Frame 1 Frame 2 Displayed

» Change video buffer during updating

* Solution:
* Double buffering -- write to a “virtual screen” that 1sn’t
being displayed.
« Either BLT buffer all at once, or switch pointer.

Video Pointer
Video Backup \

Buftfer Buftfer

Clipping

* Display the parts of the objects on the screen
* Can get array out of bound errors 1f not careful
* Easy for sprites — done in DirectX

* Approaches:

« Border vs. image space or object space

¥—3

Image Space vs. Object Space

* Image space:
* What 1s going to be displayed
* Primitives are pixels

* QOperations related to number of pixels
* Bad when must do in software
* Good if can do in parallel in hardware — have one “processor”/pixel

* Object space:
* Objects being simulated 1n games
* Primitives are objects or polygons
* Operations related to number of objects

Border Clipping

* Create a border that 1s as wide as widest object
* Only render image, not border
« Restricted to screen/rectangle clipping
« Still have to detect when object is outside border
» Requires significantly more memory

Image Space Clipping

* Image Space:
» The pixel-level representation of the complete image.

« Clipping
» For each pixel, test if it is inside the visible region
« If buffer is 320x200, test 0-319 in x, 0-199 in y.

« Evaluation
Easy to implement
Works for all objects: lines, pixels, squares, bit maps
Works for subregions
Expensive! Requires overhead for every point rendered if done in software
Cheap if done in hardware (well the hardware cost something)

Object Space Clipping

* Object space:
* Analytical representation of lines, polygons, etc.

* Clipping
* Change object to one that doesn’t need to be clipped (e.g.,
shorten the line)
* New object is passed to render engine without any testing

for clipping
\

e Evaluation N
« Usually more efficient than 1image space software
» But hardware support of image space 1s fast

* Need different algorithm for different types of objects
» Lines are easy. Concave objects are problematic
e Usually just worry about bitmaps

Line Clipping Cases

Arcade Games

« Examples

* Missile Command, Space Invaders, Breakout, Centipede,
Pac-Man, Frogger, Tempest, Joust,

* Important Traits:
Easy-to-learn — simple controls
Move objects around the screen

Single-screen — or simple scrolling
Infinite Play

Multiple Lives
Scoring — highest score
Little to no story

Game Loop

Initialization

Exit

Overall Game
Control

Game Session

Control

<

v

Player Input

v

Main Logic

* Physics

* Game Al

* Collision Processing

!

Render scene
to buffer

I

Copy buffer to

display

Static Objects

e Background, frame, fixed building, maze structure, ...

e Draw only once

* Can be very complex
Background

Screen

Dynamic Objects: Sprites

Usually small number of pixels

Most be draw on screen 30 times/second
* Save background that sprite covers

e Player’s Sprite
« Paddle, gun, tank, ...
o User can move it, turn, shoot, ...

* Game Sprites

 All of the other objects 1n the game that move
« Bullets/missiles shot by player l

e Most common 1nteraction 1s collision

 Fast collision detection 1s important -
Screen

Sprites:

* Object that moves around, displayed as a bit map
« NxM pixels:12 x 12 =144. 100 x 100 = 10,000.
» Displayed on a background

Sprite Data

o Static
o Size
e Image sets
 Weapons, shields, worth, ...

* Dynamic
Position
Velocity
Pose
Current image
Strength, health, ...
Saved background

Creating Sprites

e Create Sprite 1n 2D or 3D drawing package

« 2D
* Gimp
* Photoshop
* Corel’s Paint Shop Pro (was JASC) or Painter (was Fractal Design)

3D
» Blender 3D
» Milkshape 3D
* 3D Studio Max
 Maya

o Save as file

Drawing the Sprite

e Some parts of the sprite are transparent
« Use a special code (255) to be transparent
 When drawing the pixels, don’t copy that code
 [s expensive because done for every pixel

* Some sprites have no transparencies
e Can have separate draw function
* Avoid test for transparency

Sprite Movement and Display

Compute new position of Sprite
If Sprite moved, erase Sprite by restoring saved background
Save background where Sprite will go

Draw Sprite

Run-Length Encoding

e Compress Sprites 1n files using “run-length encoding” (RLE).
 Instead of representing every pixel, encode number of consecutive
pixels of same kind in a row
* Big win if lots of same color in a row (transparent)
* Doesn’t capture vertical or 2D structure well.

« Not so good:

Long runs of same color

T
- =
e Much better: =P
2@ 11m |1 mo

Sprite Scaling

* Used to show change in depth (distance)

e Options:
* Dynamic computation
« Can lead to very blocky pictures when they get big

* Pre-store different sizes
» Hard to get large numbers of intermediate sizes

* Pre-store different sizes for major size changes: x2
e Dynamically compute intermediate sizes

* Supported in Direct-X (in hardware and software)

Depth

« C(Can fake depth by scaling but what 1f overlap?
« Want closer objects to cover distant objects
« Associate depth with each Sprite - usually small number

* Image space solution
« Maintain shallowest depth rendered
* Add pixel if closer than previous
* Lots of work at each pixel if in software
« Hardware Z-buffer to rescue - standard for game machines

* Object space solution

« Sort objects by depth
* O(# of objects * log(# of objects))
* Draw back to front

Sprite Rotation

« Store each orientation as a separate bit map
16 different pictures 1s reasonable start

* Pick the closest one to the current orientation

e (Calculating from scratch usually too slow

e Sometimes supported by hardware

Sprite Animation

« Changes 1n the display as state of object changes
* Example: standing, sitting, jumping, singing, shooting

* Choose the current bit-map based on object state
« Might require separate timer for animation changes

 Storage 1f including rotation
« # of bitmaps =# of angles * # of states

Semi-static Objects

Rarely changes, doesn’t move
Examples: Walls that can be damaged
Change drawing on screen or buffer
Not worth redrawing every cycle

Do not have to save background Score 14

Dynamic Background

 If the background 1s scrolling or changing a lot
« Redraw complete buffer from scratch
* Avoid saving background for sprites
* More drawing

o FHither

* Draw from back to front
* Draw using z-buffer or z-list

Scrolling - simple

Horizontal scrolling: usually side view of world

SCTrecn

Scrolling - simple

Vertical scrolling: usually top view of world

D
1 I

screen “

Scrolling — Tile Based

Tile map

! !
N]
1=
‘ ‘\ g
)]

SCreen

Scrolling — Sparse
* Object-based

« Keep list of objects with their positions
« Each time render those objects 1in current view
* Go through list of object — linear in # of objects

* Grid-based

* Overlay grid with each cell having a list of objects
* Only consider objects in cells that are in view

Collision Detection

e Image Space:
* Pixel by pixel basis. Expensive.

* Object Space:

« Hard for complex and concave spaces:

« Standard Approach:
* Cheat!

* Create a bounding box or circle
* test each vertex to see in another object

« Hide this by making your objects boxy

* Don’t have objects like:

« Can use multiple bounding shapes and bounding
areas

Sprite Collisions

* Easiest:

« Use the bounding box that includes all the pixels
Test 1f vertex of one 1n
bounding box of other

* Tricky:
* Use something a little smaller to avoid some fake collisions

« If things happen fast enough, people can’t tell \
* Almost right but expensive:

 Test if non-transparent pixels overlap
* Can still miss some cases...

Collision?

EE .

Be extra careful if variable time step 1s used in game loop

