
Introduction to 3D GraphicsIntroduction to 3D Graphics

John E. LairdJohn E. Laird

22

Basic IssuesBasic Issues
 Given an internal model of a 3D world, withGiven an internal model of a 3D world, with

textures and light sources how do you project ittextures and light sources how do you project it
on the screen from any perspective on the screen from any perspective fast.fast.
 Restrictions on geometryRestrictions on geometry
 Restrictions on viewing perspectiveRestrictions on viewing perspective
 Lots of algorithmsLots of algorithms

 QuestionsQuestions
 How do I draw polygons on the screens?How do I draw polygons on the screens?
 Which polygons should I draw?Which polygons should I draw?
 How should I rasterize them (for lighting and texture)?How should I rasterize them (for lighting and texture)?

33

Overview: Simple 3D graphicsOverview: Simple 3D graphics

 3D space3D space
 Points, Lines, Polygons, and Objects in 3DPoints, Lines, Polygons, and Objects in 3D
 Coordinate SystemsCoordinate Systems
 Translation, Scaling, and Rotation in 3DTranslation, Scaling, and Rotation in 3D
 ProjectionsProjections
 Solid ModelingSolid Modeling
 Hidden-surface removalHidden-surface removal
 Z-BufferingZ-Buffering

44

3D Space3D Space

+Y

+Z +X

+Y

+Z

+X

Right-handed system Left-handed system

55

Points, Lines, PolygonsPoints, Lines, Polygons

 Points: x, y, zPoints: x, y, z
 Line: two pointsLine: two points
 Polygon: list of vertices, color/texturePolygon: list of vertices, color/texture

+Y

+Z +X

66

ObjectsObjects
 Made up of sets of polygonsMade up of sets of polygons

 Which are made up of linesWhich are made up of lines
 Which are made of Which are made of pointspoints
 No curved surfacesNo curved surfaces

 Just a Just a ““shellshell””
 Not a solid objectNot a solid object

 Everything is a set of pointsEverything is a set of points
 In local coordinate systemIn local coordinate system

+Y

+Z +X

Polygons

77

88

Object TransformationsObject Transformations

 Since all objects are just sets of points,Since all objects are just sets of points,
we just need to translate, scale, rotate thewe just need to translate, scale, rotate the
points.points.

 To manipulate a 3D point, use matrixTo manipulate a 3D point, use matrix
multiplication.multiplication.

 Translation:Translation:
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | 1 0 0 0 | 1] = [x y z 1] | 1 0 0 0 |

 | 0 1 0 0 | | 0 1 0 0 |

 | 0 0 1 0 | | 0 0 1 0 |

 | dx dy dz 1 | | dx dy dz 1 |

99

ScalingScaling

 Constant Axis ScalingConstant Axis Scaling
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | s 0 0 0 | 1] = [x y z 1] | s 0 0 0 |

 | 0 s 0 0 | | 0 s 0 0 |

 | 0 0 s 0 | | 0 0 s 0 |

 | 0 0 0 1 | | 0 0 0 1 |

 Variable Axis ScalingVariable Axis Scaling
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | sx 0 0 0 | 1] = [x y z 1] | sx 0 0 0 |

 | 0 sy 0 0 | | 0 sy 0 0 |

 | 0 0 sz 0 | | 0 0 sz 0 |

 | 0 0 0 1 | | 0 0 0 1 |

1010

RotationRotation
 Parallel to x-axisParallel to x-axis
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | 1 0 0 0 | 1] = [x y z 1] | 1 0 0 0 |
 | 0 cos r sin r 0 | | 0 cos r sin r 0 |
 | 0 -sin r cos r 0 | | 0 -sin r cos r 0 |
 | 0 0 0 1 | | 0 0 0 1 |

 Parallel to y-axisParallel to y-axis
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | cos r 0 -sin r 0 | 1] = [x y z 1] | cos r 0 -sin r 0 |
 | 0 1 0 0 | | 0 1 0 0 |
 | sin r 0 cos r 0 | | sin r 0 cos r 0 |
 | 0 0 0 1 | | 0 0 0 1 |

 Parallel to z-axisParallel to z-axis
[x[x’’ y y’’ z z’’ 1] = [x y z 1] | cos r sin r 0 0 | 1] = [x y z 1] | cos r sin r 0 0 |
 |-sin r cos r 0 0 | |-sin r cos r 0 0 |
 | 0 0 1 0 | | 0 0 1 0 |
 | 0 0 0 1 | | 0 0 0 1 |

1111

Three Coordinate SystemsThree Coordinate Systems
 World-centered: Where objects are in the worldWorld-centered: Where objects are in the world
 Object-centered: Relative to position of objectObject-centered: Relative to position of object
 View-centered: Relative to the position of viewerView-centered: Relative to the position of viewer

 Simplest case is viewing down z-axisSimplest case is viewing down z-axis

+Y

+Z +X

1212

ProjectionsProjections

 Mapping a 3D object onto a 2D viewingMapping a 3D object onto a 2D viewing
surfacesurface

View Plane
Perspective projection

Parallel projection

1313

ProjectionsProjections
 ParallelParallel

 If viewing down z-axis, just discard z componentIf viewing down z-axis, just discard z component
 PerspectivePerspective

 If viewing down z-axis, scale points based onIf viewing down z-axis, scale points based on
distance.distance.

 x_screen = x / zx_screen = x / z
 y_screen = y / zy_screen = y / z

1414

ProjectionsProjections
 Usually not viewing down center of z axis.Usually not viewing down center of z axis.
 Usually x = 0 and y = 0 at bottom leftUsually x = 0 and y = 0 at bottom left
 Correct by adding 1/2 screen sizeCorrect by adding 1/2 screen size

 x_screen = x/z + 1/2 screen widthx_screen = x/z + 1/2 screen width
 y_screen = y/z + 1/2 screen heighty_screen = y/z + 1/2 screen height

 To get perspective right, need to know field ofTo get perspective right, need to know field of
view, distance to screen, aspect ratio.view, distance to screen, aspect ratio.
 Often add scaling factor to get it to look rightOften add scaling factor to get it to look right
 x_screen = x*scale /z + 1/2 screen widthx_screen = x*scale /z + 1/2 screen width

1515

Field of ViewField of View

 To simulate human vision:To simulate human vision:
 110-120 degrees horizontally110-120 degrees horizontally
 < 90 vertically< 90 vertically

 Think of the viewing pyramid or frustumThink of the viewing pyramid or frustum

1616

ClippingClipping

View plane

Viewing frustum

Far clip plane

near clip plane

1717

Drawing the SurfaceDrawing the Surface

 Split triangles and fill in as describedSplit triangles and fill in as described
earlierearlier

1818

Solid ModelingSolid Modeling
 Which surfaces should be drawn?Which surfaces should be drawn?

 Object space methodsObject space methods
 Hidden Surface RemovalHidden Surface Removal
 Painters AlgorithmPainters Algorithm
 BSP TreesBSP Trees

 Image space methodsImage space methods
 Z-BufferingZ-Buffering
 Ray CastingRay Casting

1919

Hidden Surface RemovalHidden Surface Removal

 Step 1:Step 1:
 Remove all polygons outside of viewing frustumRemove all polygons outside of viewing frustum

 Step 2:Step 2:
 Remove all polygons that are facing away from the viewerRemove all polygons that are facing away from the viewer
 If the dot product of the view vector and the surfaceIf the dot product of the view vector and the surface

normal is >= 90 degrees, it is facing away.normal is >= 90 degrees, it is facing away.
 Surface normal = cross product of two co-planar edges.Surface normal = cross product of two co-planar edges.
 View vector from normal point to viewpointView vector from normal point to viewpoint

 Step 3:Step 3:
 Draw the visible faces in an order so the object looks right.Draw the visible faces in an order so the object looks right.

2020

Testing if Surface is VisibleTesting if Surface is Visible

N
V

UN=UxV

Viewpoint

2121

PainterPainter’’s Algorithms Algorithm
 Basic ideaBasic idea

 Sort surfaces and then draw so looks right.Sort surfaces and then draw so looks right.
 If all surface are parallel to view plane, sort based onIf all surface are parallel to view plane, sort based on

distance to viewer, and draw from back to front.distance to viewer, and draw from back to front.
 Worst-case is O(n^2)Worst-case is O(n^2)
 Otherwise, have five tests applied to each pair to sort.Otherwise, have five tests applied to each pair to sort.
 Order tests by cheap to expensiveOrder tests by cheap to expensive

 Why canWhy can’’t come up with order (max, min, mean)?t come up with order (max, min, mean)?

+z

+x

Polygon 2

Polygon 1

View direction

2222

Test 1: X overlapTest 1: X overlap

 If the x extents of two polygons do notIf the x extents of two polygons do not
overlap, then order doesnoverlap, then order doesn’’t matter and got matter and go
to next pair.to next pair.

 If x extents overlap, If x extents overlap, gotogoto test 2. test 2.

+y

+x

2323

Test 2: Y OverlapTest 2: Y Overlap

 If the y extents of two polygons do notIf the y extents of two polygons do not
overlap, then order doesnoverlap, then order doesn’’t matter.t matter.

 If y extents overlap, If y extents overlap, gotogoto test 3. test 3.

+y

+x

2424

Tests 3 & 4Tests 3 & 4

 Extend polygons to be a cutting planeExtend polygons to be a cutting plane
 If a polygon can be contained within the cutting planeIf a polygon can be contained within the cutting plane

of the other, that polygon should be drawn first.of the other, that polygon should be drawn first.
 If neither can be contained, go to step 5.If neither can be contained, go to step 5.

+z

+x

Polygon 2

Polygon 1

View direction
Polygon 1 is completely on the far side of
the plane that extends from polygon 2.

2525

Test 5Test 5

 Only needs to be consider if haveOnly needs to be consider if have
concave polygons.concave polygons.

2626

How to make it easierHow to make it easier

 Use convex objectsUse convex objects
 Avoid long objects (like walls) that canAvoid long objects (like walls) that can

overlap each other in multiple dimensionsoverlap each other in multiple dimensions
 Avoid intersecting objects and polygonsAvoid intersecting objects and polygons

2727

Z-bufferZ-buffer
 Z-buffer holds the z-coordinate of ever pixelZ-buffer holds the z-coordinate of ever pixel

 Usually 16 or 32-bits/pixelUsually 16 or 32-bits/pixel
 Initialize all values to maximum depthInitialize all values to maximum depth
 Compute the z value of every point of every non-Compute the z value of every point of every non-

back facing polygonback facing polygon
 Not too hard if all polygons are triangles or rectanglesNot too hard if all polygons are triangles or rectangles
 Do this during the filling of the trianglesDo this during the filling of the triangles

 If z of point < z in Z-buffer, save the color of theIf z of point < z in Z-buffer, save the color of the
current point and update Z-buffercurrent point and update Z-buffer
 otherwise throw away point and move onotherwise throw away point and move on

 In all 3D hardware nowIn all 3D hardware now

2828

Ray TracingRay Tracing

 Technique that mimics physical processes of lightTechnique that mimics physical processes of light
 Extremely computationally intensive, but beautifulExtremely computationally intensive, but beautiful

 Hidden surface removalHidden surface removal
 TransparencyTransparency
 ReflectionsReflections
 RefractionRefraction
 Ambient lightingAmbient lighting
 Point source lightingPoint source lighting
 ShadowsShadows

2929

ShadingShading

 Compute lighting based on angle of lightCompute lighting based on angle of light
on polygon surface.on polygon surface. Surface normal

3030

GouraudGouraud Shading Shading
 Compute shading for each pixel byCompute shading for each pixel by

averaging shading based on distance andaveraging shading based on distance and
shading of vertices.shading of vertices.

3131

TransparencyTransparency

 Use an extra set of bits to determine transparencyUse an extra set of bits to determine transparency
 AlphaAlpha
 Blend present value of the color buffer with new values.Blend present value of the color buffer with new values.

3232

Texture MappingTexture Mapping
 Apply stored bit map to a surfaceApply stored bit map to a surface

 Average Average texels texels covered by pixel imagecovered by pixel image

Texture map
(Texels) PixelSurface

3333

3D Collision Detection3D Collision Detection
 CanCan’’t be done in image spacet be done in image space
 Usually use hierarchical approachUsually use hierarchical approach

 First find objects in same 3D cellsFirst find objects in same 3D cells
 Second test for overlaps in bounding sphere or boxSecond test for overlaps in bounding sphere or box
 ThirdThird

 Good enough!Good enough!
 Check for polygon collisionsCheck for polygon collisions

 Accurate 3D collision detection is very expensiveAccurate 3D collision detection is very expensive

