Introduction to 3D Graphics

John E. Laird

Basic Issues

e Given an internal model of a 3D world, with
textures and light sources how do you project it
on the screen from any perspective fast.

e Restrictions on geometry
e Restrictions on viewing perspective
e Lots of algorithms

e Questions
e How do | draw polygons on the screens?
e \Which polygons should | draw?
e How should | rasterize them (for lighting and texture)?

2

Overview: Simple 3D graphics

e 3D space

e Points, Lines, Polygons, and Objects in 3D
e Coordinate Systems

e Translation, Scaling, and Rotation in 3D

e Projections

e Solid Modeling

e Hidden-surface removal

e Z-Buffering

3D Space

>

+X

Right-handed system Left-handed system

Points, Lines, Polygons

e Points: X, y, z
e Line: two points
e Polygon: list of vertices, color/texture

+Y

—_

Objects

e Made up of sets of polygons
e \Which are made up of lines
e \Which are made of points
e No curved surfaces
e Just a “shell”
e Not a solid object

e Everything is a set of points
e In local coordinate system

Object Transformations

e Since all objects are just sets of points,
we just need to translate, scale, rotate the
points.

e [0 manipulate a 3D point, use matrix
multiplication.

e [ranslation:
[x" y' z" 1] = [xy z 1]

Scaling

e Constant Axis Scaling
(x' y' z' 1] = [xy z 1] |

e Variable Axis Scaling

[x" y' z" 1] = [xy z 1] | sx 0 O
| 0 sy O
| 0 0 sz
| 0 0 O

Rotation

e Parallel to x-axis
[(x" y’ z'" 1] = [x y z 1]

e Parallel to y-axis
[(x" y’ z'" 1] = [x y z 1]

e Parallel to z-axis
[(x" y' z'" 1] = [x y z 1]

Three Coordinate Systems

World-centered: Where objects are in the world
Object-centered: Relative to position of object
View-centered: Relative to the position of viewer

Simplest caASLé/L/(ewing down z-axis

Projections

e Mapping a 3D object onto a 2D viewing
surface

. Perspective projection
View Plane

Parallel projection

Projections

e Parallel
e |f viewing down z-axis, just discard z component

e Perspective

e If viewing down z-axis, scale points based on
distance.

® X screen= x/z
ey screen=Yy/z

Projections

e Usually not viewing down center of z axis.
e Usually x =0 and y = 0 at bottom left

e Correct by adding 1/2 screen size
e X_screen = x/z + 1/2 screen width
e y screen =y/z + 1/2 screen height

e [0 get perspective right, need to know field of
view, distance to screen, aspect ratio.
e Often add scaling factor to get it to look right
e X_screen = x*scale /z + 1/2 screen width

Field of View

e 1o simulate human vision:
e 110-120 degrees horizontally
e < 90 vertically

e Think of the viewing pyramid or frustum

lip plane

"\

Viewing frustum

View plane

Drawing the Surface

e Split triangles and fill in as described
earlier

Solid Modeling

e \Which surfaces should be drawn?

e Object space methods
e Hidden Surface Removal

e Painters Algorithm
e BSP Trees

e Image space methods
e Z-Buffering
e Ray Casting

Hidden Surface Removal

e Step 1:

e Remove all polygons outside of viewing frustum

e Step 2:
e Remove all polygons that are facing away from the viewer

e If the dot product of the view vector and the surface
normal is >= 90 degrees, it is facing away.
e Surface normal = cross product of two co-planar edges.
e View vector from normal point to viewpoint

e Step 3.

e Draw the visible faces in an order so the object looks right.

19

Testing if Surface is Visible

Viewpoint

Painter's Algorithm

e Basic idea
e Sort surfaces and then draw so looks right.

e If all surface are parallel to view plane, sort based on
distance to viewer, and draw from back to front.

e Worst-case is O(n"2)
e Otherwise, have five tests applied to each pair to sort.

e Order tests by cheap to expensive
e \Why can’'t come up with order (max, min, mean)?

A
View direction

Polygon I—*

Polygon 2

Test 1: X overlap

e If the x extents of two polygons do not
overlap, then order doesn’t matter and go
to next pair.

e If X extents overlap, goto test 2.

A

A

Test 2: Y Overlap

e If the y extents of two polygons do not
overlap, then order doesn’'t matter.

e |f y extents overlap, goto test 3.

Tests 3 & 4

e Extend polygons to be a cutting plane

e |f a polygon can be contained within the cutting plane
of the other, that polygon should be drawn first.

e |f neither can be contained, go to step 5.

View direction

L Polygon 1 is completely on the far side of
) the plane that extends from polygon 2.

\% Polygon 2
Polygy

Test 5

e Only needs to be consider if have
concave polygons.

A

How to make it easier

e Use convex objects

e Avoid long objects (like walls) that can
overlap each other in multiple dimensions

e Avoid intersecting objects and polygons

Z-buffer

e Z-buffer holds the z-coordinate of ever pixel
e Usually 16 or 32-bits/pixel

e |nitialize all values to maximum depth

e Compute the z value of every point of every non-
back facing polygon

e Not too hard if all polygons are triangles or rectangles
e Do this during the filling of the triangles

e If z of point < z in Z-buffer, save the color of the
current point and update Z-buffer

e otherwise throw away point and move on
e |In all 3D hardware now

Ray Tracing

e Technique that mimics physical processes of light

e Extremely computationally intensive, but beautiful
e Hidden surface removal
e Transparency
e Reflections
e Refraction
e Ambient lighting
e Point source lighting
e Shadows

Shading

e Compute lighting based on angle of light
on polygon surface \ Surface normal

e

Gouraud Shading

e Compute shading for each pixel by
averaging shading based on distance and
shading of vertices.

—

Transparency

e Use an extra set of bits to determine transparency
e Alpha
e Blend present value of the color buffer with new values.

Texture Mapping

e Apply stored bit map to a surface

Texture

map

(Texels)

Surface

—

Ve

[+—

L]

e Average texels covered by pixel image

3D Collision Detection

e Can't be done in image space

e Usually use hierarchical approach
e First find objects in same 3D cells

e Second test for overlaps in bounding sphere or box
e Third

e Good enough!
e Check for polygon collisions

e Accurate 3D collision detection is very expensive

