
Artificial Intelligence and
Computer Games
John Laird and Sugih Jamin

EECS 494
University of Michigan

Also based on talks by Doug Church and
Lars Lidén

What is AI?
• The term AI is broadly used in computer games

• Behave rationally: Use available knowledge to maximize
goal achievement.

• Often leads to optimization techniques.
• A set of capabilities: Problem solving, learning, planning, ...

• Different game genre employs different techniques

Roles of AI in Games
• Opponents
• Teammates
• Strategic Opponents
• Support Characters
• Autonomous Characters
• Commentators
• Camera Control
• Plot and Story Guides/Directors

AI Provides
• Character, Emotion
• Understanding Environments
• Solving Logic, Resolving Rules
• Decision making, w/Attitude Bias
• Not yet “virtual people”, as such

AI Roles in Games

AI Roles
Other cars
Other fighters

Enemies, allies
Monsters, party members

Strategic Enemies
Units
Commentators, camera

Game Genres
Racing

Fighting

Action/FPS
RPG

Adventure
Strategy

Simulation
Sports

Obvious Examples

Situations where “AI” might be, could be,
should be, and is used in Games

• Car Game – write a virtual driver
• Shooter – write a virtual player
• Sports Games – write a virtual coach
• RTS – write a virtual general

Racing Opponents
• Originally follow course “on rails”
• Next allow different speeds in curves, hills, …
• Finally, control vehicle using game physics

• Use human play traces
• Provide variety and skill levels with different humans
• Transition between trace following and respond to dynamics

• Powerups, human player, …

• Rubber banding near player make it challenging
• Attempt to have driver “personality”

Somewhat Real Examples
• Car Game – write AI to keep races close
• Shooter – enemies die lots, win little
• Sports – commentators, help player
• RTS – generals who work on pacing
• It is A Question of Design Purpose

Commentator Examples
• Excitement, plus reason for play result
• Finite range of possible utterances

• “decision quality” is often less important than the
“media asset quality”

• Better to be silent than stupid
• Correct isn’t good enough

• [take a knee != loss of 2]

Requirements for Game AI
• What is the goal of the game?

• Focus on the Player Experience

• How is the AI going to further that goal?
• Needs to achieve design aim (and be fun)
• Foil for the player, creates opportunity

• Dynamic challenge
• Assists in Driving the action
• Allow player to understand AI actions
• Configurable, Override-able, Testable

• Reproducibility is vital, for test and design

• Satisfies data and speed constraints

The “Thief” AI
Design Goals
• Player is going to be a Thief
• I.e. Sneak Around, Ambush, Hide, Steal

• AI must allow players to make plans
• And react to player actions, provide challenge

• Game will feature a loose overall story
• Ability to script/override behavior
• In game actions fed back out to story control

“Watch-able” by the player
• Has to “go about its business” with intent
• Actions must make sense to player

• “interestingly predictable”
• present play opportunities for player

• Overemphasize thoughts
• Telegraph all actions
• Goals must be very explicit

Artificial Stupidity
• Intelligence != Fun

• What makes a game entertaining and fun does not
necessarily correspond to making characters smarter

• Must be fun, not correct

• The player is, after all, supposed to win

• Lars Liden’s 11 Ways to be stupid

1. Don’t cheat
• AI should not be omniscient:

• Knows where enemies are without seeing them
• Know where to find resources, weapons, ammo

• Players can detect cheating and will find the game
unfair

2. Don’t kill on first attempt
• It’s not fun to suddenly and unexpectedly take damage
• Player may feel cheated, particularly if attacked with a

weapon that kills the player or does a lot of damage
• By missing the player the first time, it gives the player

a second to react and still keeps the tension high

3. Have horrible aim
• Having abundant gun fire in the air keeps the player on

the move and the tension high
• However, the player is supposed to win
• By giving NPC bad aim, one can have abundant gun

fire without being too hard on the player
• “Half-Life” used a wide spread on NPC weapons (as

much at 40 degrees)

4. Never shoot when first see the player
• When a player first walks into an area and is spotted

by an enemy, the enemy should never attack right away
• A secondary activity, such as running for cover or

finding a good shooting location is more desirable
• Gives player time to react

5. Warn the Player
• Before attacking the player, warn the player that you

are about to do so
• Make a sound (beep/click)
• Play a quick animation
• Say “Gotcha!”, “Take this”

• This is particularly important when attacking from
behind

6. Attack “kung-fu” style
• Player is usually playing the role of “Rambo” (i.e. one

man taking on an army)
• Although many NPCs may be in a position to attack

the player, only a couple should do so at a time
• The remaining NPCs should look busy, reloading,

changing positions, etc.

7. Tell the player what you are doing
• Interpreting the actions of AIs can often be subtle
• Complex behaviors are often missed by the player.

(Lot’s of work for nothing)
• AIs should tell the player what they are doing

• “flanking!” “cover me!” “retreat!”

• Players will often intuit intelligence behavior that isn’t
really there

8. Intentionally be vulnerable
• Players learn to capitalize on opponent’s weaknesses
• Rather than allowing the player to discover unintentional

weaknesses in the AI, vulnerability should be designed into an
AI’s behavior
• Stop moving before attacking
• Pause and prepare weapon before attacking
• Act surprised and slow to react when attacked from behind

• Planned vulnerability makes the characters seem more realistic
• Unintentional mistakes break the realism (seems like fighting a

computer program)

9. Don’t be perfect
• Human players make mistakes
• When AIs behave perfectly they seem unnatural
• If an AI knows how to avoid trip mines, run into then

occasionally
• When reloading, sometimes fumble with the gun

10. Pull back last minute
Trick:
• Push the player to the limit
• Attack vigorously until the player is near death
• Then pull back. Enemy becomes easier to kill
• Makes player feel like they really accomplished

something

11. React To Mistakes
• Mistakes in AI are inevitable

• Unhandled, they make make the AI look dumb

• By recognizing mistakes and reacting to them
intelligently they can be turned into features

11. React To Mistakes
• Example 1:

• Occasionally when an NPC throws a grenade, it bounces off
of another object and lands back at the NPCs feet

• (Note that the player occasionally makes this mistake too!)

• Looks dumb as the NPC blows himself up

• If the NPC reacts, however, the mistake turns into a feature:
• NPC body and facial expression can show surprise, fear
• NPC can say “Oh Shoot!” or “Doh!”

11. React To Mistakes
• Example 2:

• Player throws a grenade at a group of NPCs. As they are
crowded together not all of them are able to find a path to
get away

• Looks dumb if the NPCs that can’t get away, shuffle around
trying to get out

• If we detect that the problem has arisen, can have the
trapped NPC’s react

• Crouch down and put hands over head

Themes
• Player Player Player Player Player Player
• How can AI enhance player experience
• AI is facilitator of the “fun”
• Enable creative expression for player

• Allow player to impact the world
• Put player in interesting situations

• Entertaining game != “smarter” opponents
• Machine opponents are babysitters, not ruthless opponents
• Players aren’t pro players, or pro strategists
• Give player ways to make the big play

• The illusion of intelligence is far more important than actual intelligence
• Predictable often more important than smart
• Clever AI decisions are no better than secret special knowledge if player can’t tell

Observations
• AI has three basic game roles

• Replacement for human opponents and players
• Support characters for interesting player interaction
• Units for player management

• Entertainment is much more important than realism
• Cheating is ok if user can’t detect it
• Play to lose or at least make it challenging
• Must include variable levels of skills

• No single type of AI is right for all games or all AI roles

AI Agent in a Game
• Each time through control loop, “tick” each agent

• Sometimes only 1/N times through loop
• More frequently if in view of player

• Define an API for agents: sensing and acting
• Encapsulate all agent data structures

• And so agents can’t trash each other or the game
• Share global data structures on maps, etc. Agent 1

Agent 2

Player

Game

Execution Flow of an AI Engine

Sense

Think

Act

G

A

M

E

Finite-state machines

Decision trees

Rule-based systems

Neural nets

Fuzzy logic

Planning systems

What should be sensed?

Animation

Decision Making

Movement and path finding

Tactical and Strategic AI

Structure of an Intelligent Agent
• Sensing: perceive features of the environment
• Thinking: decide what action to take to achieve its

goals, given the current situation and its knowledge
• Acting: doing things in the world

• Thinking has to make up for limitations in sensing and
acting

• The more accurate the models of sensing and acting,
the more realistic the behavior

Sensing Limitations & Complexities
• Limited sensor distance
• Limited field of view:

• Must point sensor at location and keep it on

• Obstacles
• Complex room structures

• Detecting and computing paths to doors

• Different sensors give different information and have
different limitations
• Sound: omni-directional, gives direction, distances, speech, ...
• Vision: limited field of view, 2 1/2D, color, texture, motion, ...
• Smell: omni-directional, chemical makeup
Need to integrate different sources to build complete picture.

Perfect Agent: Unrealistic
• Sensing: Have perfect information of opponent
• Thinking: Have enough time to do any calculation

• Know everything relevant about the world

• Action: Flawless, limitless action
• Teleport anywhere, anytime

I know what to do!

Conflicting Goals for
AI in Games

Goal
Driven

Reactive

Human

Characteristics
Knowledge

Intensive

Low CPU &
Memory
Usage

Fast & Easy
Development

Complexity
• Complexity of Execution

• How fast does it run as more knowledge is added?
• How much memory is required as more knowledge is added?

• Complexity of Specification
• How hard is it to write the code?
• As more “knowledge” is added, how much more code needs

to be added?

• Memory of prior events
• Can it remember prior events?
• For how long?
• How does it forget?

Execution Flow of an AI Engine

Sense

Think

Act

G

A

M

E

Finite-state machines

Decision trees

Rule-based systems

Neural nets

Fuzzy logic

Planning systems

What should be sensed?

Animation

Decision Making

Movement and path finding

Tactical and Strategic AI

Finite State Machine

Events:

E=Enemy Seen

S=Sound Heard

D=Die

Spawn
D

(-E, -S)

Wander
-E, -S, -D

D
-E

E

-S

Attack
E, -S, -D

E

-E

Chase
S, -E, -D

S

D

E

D

S

Example FSM

Events:

E=Enemy Seen

S=Sound Heard

D=Die

Spawn
D

(-E, -S)

Wander
-E, -S, -D

D
-E

E

-S

Attack
E, -S, -D

E

-E

Chase
S, -E, -D

S

D

E

D

S

Problem: No transition
from attack to chase

Example FSM - Better

Events:

E=Enemy Seen

S=Sound Heard

D=Die

Attack-S
E, -D, S

S

-E

-S

S

E

-S

Attack
E, -D, -S

E

-E

Spawn
D

(-E,-S,-L)

Wander
-E, -S, -D

D
-E

Chase
S, -E, -D

D

D

S

ED

Example FSM with Retreat

Events:
E=Enemy Seen
S=Sound Heard
D=Die
L=Low Health

Each feature with
N values can
require N times as
many states

Spawn
D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

Hierarchical FSM
• Expand a state into its own FSM

Wander

Die

S/-S

E/-E

Attack

Chase

Spawn

Start
Turn Right

Go-through
Door

Pick-up
Powerup

Non-Deterministic Hierarchical
FSM (Markov Model)

Attack

Die

No enemy

Wander

Start

Start

Approach

Aim &
Jump &
Shoot

Aim &
Slide Left
& Shoot

Aim &
Slide Right

& Shoot .3
.3

.4

.3
.3

.4

Decision Trees
• Tree nodes represent attribute tests

• One child for each possible value of the attribute

• Leaves represent classifications
• Classify by descending from root to a leaf

• At root test attribute associated with root attribute test
• Descend the branch corresponding to the instance’s value
• Repeat for subtree rooted at the new node
• When a leaf is reached return the classification of that leaf

Example FSM with Retreat

Spawn
D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

Events:

E=Enemy

S=Sound

D=Die

L=Low Health

Each new
feature can
double
number of
states

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

Decision Tree for Quake
• Input Sensors: E=<t,f> L=<t,f> S=<t,f> D=<t,f>
• Categories (actions): Attack, Retreat, Chase, Spawn, Wander

D?

Spawn E?

L? S?

WanderRetreat Attack L?

t

t

t t

f

f

f f

Retreat Chase

t f

Learning Decision Trees
• Decision trees are usually learned by induction

• Generalize from examples
• Induction doesn’t guarantee correct decision trees

• Learning is non-incremental
• Need to store all the examples

• If X is true in every example X must always be true
• More examples are better
• Errors in examples cause difficulty
• Note that induction can result in errors

Entropy
• Entropy: how “mixed” is a set of examples

• All one category: Entropy = 0
• Evenly divided: Entropy = log2(# of examples)

• Given S examples Entropy(S) = Σ –pi log2 pi
where pi is the proportion of S belonging to class i
• 14 days with 9 in play-tennis and 5 in no-tennis

• Entropy([9,5]) = 0.940
• 14 examples with 14 in play-tennis and 0 in no-tennis

• Entropy ([14,0]) = 0

Information Gain
• Information Gain measures the reduction in Entropy

• Gain(S, A) = Entropy(S) – Σ A/S Entropy(A)

• Example: 14 days: Entropy([9,5]) = 0.940
• Measure information gain of Wind=<weak,strong>

• Wind=weak for 8 days: [6,2] out of [9,5]
• Wind=strong for 6 days: [3,3] out of [9,5]
• Gain(S,Wind) = 0.048

• Measure information gain of Humidity=<high,normal>
• 7 days with high humidity: [3,4] out of [9,5]
• 7 days with normal humidity: [6,1] out of [9,5]
• Gain(S,Humidity) = 0.151

• Humidity has a higher information gain than Wind
• So choose humidity as the next attribute to be tested

Learning Example
• Learn a decision tree to replace the FSM
• Four attributes: Enemy, Die, Sound, Low Health

• Each with two values: true, false

• Five categories: Attack, Retreat, Chase, Wander,
Spawn

• Use all 16 possible states as examples
• Attack(2), Retreat(3), Chase(1) Wander(2), Spawn(8)

• Entropy of first 16 examples (max entropy = 4)
• Entropy([2,3,1,2,8]) = 1.953

Example FSM with Retreat

Spawn
D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

Events:

E=Enemy

S=Sound

D=Die

L=Low Health

Each new
feature can
double
number of
states

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

Learning Example (2)
• Information gain of Enemy

• 0.328

• Information gain of Die
• 1.0

• Information gain of Sound
• 0.203

• Information gain of Low Health
• 0.375

• So Die should be the root test

Learned Decision Tree

• 8 examples left [2,3,1,2] = 1.906
• 3 attributes remaining: Enemy, Sound, Low Health
• Information gain of Enemy

• 0.656

• Information gain of Sound
• 0.406

• Information gain of Low Health
• 0.75

D?

Spawn

t f

Learned Decision Tree (2)

• 4 examples on each side: t = 0.811; f = 1.50
• 2 attributes remaining: Enemy, Sound
• Information gain of Enemy (L = f)

• 1.406

• Information gain of Sound (L = t)
• .906

D?

Spawn

t f

L?

t f

Learned Decision Tree (3)
D?

Spawn

t f

L?

t f

S?

t f

E?

t f

Retreat E?

t f

Attack S?

t f

Retreat Wander WanderChase

Decision Tree Evaluation
• Advantages

• Simpler, more compact representation
• State = Memory

• Create “internal sensors” – Enemy-Recently-Sensed
• Easy to create and understand

• Can also be represented as rules
• Decision trees can be learned

• Disadvantages
• Decision tree engine requires more coding than FSM
• Need as many examples as possible
• Higher CPU cost
• Learned decision trees may contain errors

Rule-based System

Age ofAge of
KingsKings

MicrosoftMicrosoft

; The AI will attack once at 1100 seconds and then again; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.; every 1400 sec, provided it has enough defense soldiers.

((defruledefrule
(game-time > 1100)(game-time > 1100)

=>=>
(attack-now)(attack-now)
(enable-timer 7 1100)(enable-timer 7 1100)))

((defruledefrule
(timer-triggered 7)(timer-triggered 7)
(defend-soldier-count >= 12)(defend-soldier-count >= 12)

=>=>
(attack-now)(attack-now)
(disable-timer 7)(disable-timer 7)
(enable-timer 7 1400)(enable-timer 7 1400)))

Rule-Based Systems Structure

Match

Conflict
ResolutionAct

Changes to Working
Memory

Selected

Rule

Rule instantiations
that match working
memory

Rule Memory

Working Memory

Program

Procedural
Knowledge

Long-term
Knowledge

Data

Declarative
Knowledge

Short-term
Knowledge

Complete Picture

Sensors

Actions

Match

Conflict
ResolutionAct

Changes
to WM

Simple Approach
• No rules with same variable in multiple conditions
• Restricts what you can write, but might be ok for

simple systems

Picking the rule to fire
Simple approach

• Run through rules one at a time and test conditions
• Pick the first one that matches
• Time complexity depends on:

1. Number of rules
2. Complexity of conditions
3. Number of rules that don’t match

Creating Efficient
Rule-based Systems

• Where does the time go?
• 90-95% goes to Match

• Matching all rules against all of working memory each
cycle is way too slow

• Key observation
• # of changes to working memory each
 cycle is small

Match

Conflict
ResolutionAct

Changes to
Working
Memory

Selected

Rule

Rule
Instantiations

Picking the next rule to fire
• If only simple tests in conditions,

compile rules into a match net
• Process changes to working memory: hash into tests

R1: If A, B, C, then …A B C

R1

Conflict Set

Bit vectors for rules
if all bits are set,
add to conflict set

R2: If A, B, D, then …

D

R2

Expected cost: Linear in the number
of changes to working memory

Conflict Resolution
• Which matched rule should fire?
• Which instantiation of a rule should fire?

• Separate instantiation for every match of variables in rules

Match

Conflict
ResolutionAct

Changes to
Working
Memory

Selected

Rule

Rule
Instantiations

Conflict Resolution Filters
Select between instantiations based on filters:
1. Refractory Inhibition:

• Don’t fire same instantiation that has already fired

2. Data Recency:
• Select instantiations that match most recent data

3. Specificity:
• Select instantiations that match more working memory

elements

4. Random
• Select randomly between the remaining instantiations

Other Conflict Resolution Strategies

• Rule order – pick the first rule that matches
• Makes order of loading important – not good for big systems

• Rule importance – pick rule with highest priority
• When a rule is defined, give it a priority number
• Forces a total order on the rules – is right 80% of the time
• Decide Rule 4 [80] is better than Rule 7 [70]
• Decide Rule 6 [85] is better than Rule 5 [75]
• Now have ordering between all of them – even if wrong

Rule-based System Evaluation
• Advantages

• Corresponds to way people often think of knowledge
• Very expressive
• Modular knowledge

• Easy to write and debug compared to decision trees
• More concise than FSM

• Disadvantages
• Can be memory intensive
• Can be computationally intensive
• Sometimes difficult to debug

Neural Network for Quake
• Four input neuron

• One input for each condition

• Two neuron hidden layer
• Fully connected
• Forces generalization

• Five output neuron
• One output for each action
• Choose action with highest output
• Probabilistic action selection

Enemy
Sound

Dead
Low Health

Attack

Retreat

Wander

Chase
Spawn

Back Propagation
• Learning from examples

• Examples consist of input and correct output

• Learn if network’s output doesn’t match correct output
• Adjust weights to reduce difference
• Only change weights a small amount (η)

• Basic neuron learning
• Wi,j = Wi,j + ΔWi,j
• Wi,j = Wi,j + η(t-o)aj
• If output is too high (t-o) is negative so Wi,j will be reduced
• If output is too low (t-o) is positive so Wi,j will be increased
• If aj is negative the opposite happens

Neural Networks Evaluation
• Advantages

• Handle errors well
• Graceful degradation
• Can learn novel solutions

• Disadvantages
• Can’t understand how or why the learned network works
• Examples must match real problems
• Need as many examples as possible
• Learning takes lots of processing

• Incremental so learning during play might be possible

Genetic Algorithm: Inspiration
• Evolution creates individuals with higher fitness

• Population of individuals
• Each individual has a genetic code

• Successful individuals (higher fitness) more likely to breed
• Certain codes result in higher fitness
• Very hard to know ahead which combination of genes = high fitness

• Children combine traits of parents
• Crossover
• Mutation

• Optimize through artificial evolution
• Define fitness according to the function to be optimized
• Encode possible solutions as individual genetic codes
• Evolve better solutions through simulated evolution

Genetic Operators
• Crossover

• Select two points at random
• Swap genes between two points

• Mutate
• Small probably of randomly changing each part of a gene

Representation
• Gene is typically a string of symbols

• Frequently a bit string
• Gene can be a simple function or program

• Evolutionary programming

• Every possible gene must encode a valid solution
• Crossover should result in valid genes
• Mutation should result in valid genes

Example FSM with Retreat

Spawn
D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

Events:

E=Enemy

S=Sound

D=Die

L=Low Health

Each new
feature can
double
number of
states

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

Representing rules as bit strings
• Conditions

• Enemy = <t,f>: bits 1 and 2
• 10: Enemy = t; 01: Enemy = f; 11: Enemy = t or f; 00: Enemy has no value

• Sound = <t,f>: bits 3 and 4
• Die = <t,f>: bits 5 and 6
• Low Health = <t,f>: bits 7 and 8

• Classification
• Action = <attack,retreat,chase,wander,spawn>
• Bits 9-13: 10000: Action = attack

• 1111101100001: If dead=t then action=spawn
• Encode 1 rule per gene or many rules per gene
• Fitness function: % of examples classified correctly

Genetic Algorithm Example
• Initial Population

10 11 11 11 11010: E => Attack or Retreat or Wander
11 10 10 11 10100: S D => Attack or Chase
01 00 01 10 01100: -E -D L => Retreat or Chase
10 10 10 11 00010: E S D => Wander
...

• Parent Selection
10 11 11 11 11010: Sometimes correct
11 10 10 11 10100: Never correct
01 00 01 10 01100: Sometimes correct
10 10 10 11 00010: Never correct
...

• Crossover
10 11 11 11 11010: Sometimes correct
01 00 01 10 01100: Sometimes correct

10 10 01 10 01010: E S -D L => Retreat or Wander
01 01 11 11 11100: -E -S => Attack or Retreat or Chase

• Mutate
10 10 01 10 01010: E S -D L => Retreat or Wander
10 10 01 10 01000: E S -D L => Retreat

• Add to next generation
10 10 01 10 01000: Always correct
01 01 11 11 11100: Never correct
...

Genetic Algorithm Example

Genetic Algorithm Evaluation
• Advantages

• Powerful optimization technique
• Can learn novel solutions

• Disadvantages
• Finding correct representation can be tricky

• The richer the representation, the bigger the search space
• Fitness function must be carefully chosen
• Evolution takes lots of processing

• Can’t really run a GA during game play
• Solutions may or may not be understandable

Fuzzy Logic
• Philosophical approach

• Ontological commitment based on “degree of truth”
• Is not a method for reasoning under uncertainty

• See probability theory and Bayesian inference

• Crisp Facts – distinct boundaries
• Fuzzy Facts– imprecise boundaries
• Example – Scout reporting an enemy

• “Two to three tanks at grid NV 123456“ (Crisp)
• “A few tanks at grid NV 123456” (Fuzzy)
• “The water is warm.” (Fuzzy)
• “There might be 2 tanks at grid NV 54 (Probabilistic)

Fuzzy Rules

• If the water temperature is cold and
water flow is low then make a positive
bold adjustment to the hot water valve.

• If position is unobservable, threat is
somewhat low, and visibility is high
then risk is low.

Fuzzy Variable

Fuzzy Value represented as a fuzzy set

Fuzzy Modifier or Hedge

Fuzzy Sets

• Classical set theory
• An object is either in or not in the set

• Sets with smooth boundary
• Not completely in or out – somebody 6” is 80% tall

• Fuzzy set theory
• An object is in a set by matter of degree
• 1.0 => in the set
• 0.0 => not in the set
• 0.0 < object < 1.0 => partially in the set

• Provides a way to write symbolic rules but “add
numbers” in a principled way

Apply to Computer Game
• Can have different characteristics of entities

• Strength: strong, medium, weak
• Aggressiveness: meek, medium, nasty
• If meek and attacked, run away fast.
• If medium and attacked, run away slowly.
• If nasty and strong and attacked, attack back.

• Control of a vehicle
• Should slow down when close to car in front
• Should speed up when far behind car in front

• Provides smoother transitions – not a sharp boundary

Evaluation of Fuzzy Logic
• Does not necessarily lead to non-determinism
• Advantages

• Allows use of numbers while still writing “crisp” rules
• Allows use of “fuzzy” concepts such as medium
• Biggest impact is for control problems

• Help avoid discontinuities in behavior

• Disadvantages
• Sometimes results are unexpected and hard to debug
• Additional computational overhead
• Change in behavior may or may not be significant

Fighting Opponents
• Must select between different attacks, blocks, etc.
• Could easily overwhelm human

• Reaction-time

• Rely heavily on motion-capture for animation
• Varying amounts of AI
• State machines
• Some learning/adaptation

Tactical Enemies
• Early days

• Run and shoot: no navigation
• Sometimes see through walls

• Next step
• “Invisible” nodes for navigation
• Pick up powerups on the fly
• Still little or no obstacle avoidance
• Variability in skill

• Key issues
• Challenging but not overwhelming opponents

• Example games
• Deus Ex, Return to Wolfenstein, Max Payne, Metal Gear Solid, Halo

• Standard technology
• Scripting languages, hierarchical finite-state machines

Action/FPS Game Opponent
• Provide a challenging opponent

• Not always as challenging as a human -- Quake monsters
• What ways should it be subhuman?

• Not too challenging
• Should not be superhuman in accuracy, precision, sensing, ...

• Should not be too predictable
• Through randomness
• Through multiple, fine-grained responses
• Through adaptation and learning

Tactical Opponent

Soldier of Fortune
Raven Software

Pickup

Die

Run

Attack

Strategic Enemies
• Decide on overall strategy

• Aggressive, defensive
• Throw a lot, run a lot, dump and chase, …

• Resource Allocation
• Decide what to build, mine, grow, … with available resources

• Control Units
• To build, mine, grow, attack, defend, …
• Use special abilities of units

• Sometimes cheat to overcome weaknesses
• Play to lose?
• Example games

• Football, Age of Kings, Starcraft, Warcraft, …

• Standard technology
• Predefined scripts/plans
• Simple rule-based systems

Units
• Military units, team sport players, …
• Path planning and route following are very important!

• Efficient, flexible A*

• Formations, collision detection, motion capture
• Standard technology:

• Scripting languages
• Finite-state machines
• Simple rule-based systems

Support Characters
• Scripted behavior

• Small set of behavior routines
• Small set of responses to predefined set of questions
• Navigate via nodes

• Example Games
• Blade Runner, Diablo II, Monkey Island series, …

