Game Theory and Game Balance

EECS 494

10/30/06 by J. Laird and Sugih Jamin

Based on a talk by Michael van Lent
Game Balance

Three kinds of game balance:

• Player/player
 • A player’s performance is based on skill (and a little luck)
 • Races are balanced in StarCraft
 • Characters are balanced in fighting games

• Player/game
 • A player shouldn’t find the game too hard or too easy to win
 • Difficulty of puzzles in adventure games
 • Number of monsters in action games

• Cost/power
 • A game feature’s cost must match its power
 • Broodwar adjusted the cost/power balance of many units
Approaches to Game Balance

• Ensure that a few random elements don’t determine outcome
 • Skill matters

• Symmetry isn’t much fun
 • All players have identical choices
 • Features identical except for 2 parameters (power and cost)

• Good gameplay involves a variety of interesting choices
 • In Starcraft players choose from three races
 • Each race has 13 types of units, 18 buildings, special powers and weaknesses
 • Huge variety of strategies

• Need to insure that no race or strategy is unbeatable
 • Rock - Paper - Scissors model
 • Game Theory
 • Lots of playtesting
Game Theory

• What is game theory?
 • Field of economics/mathematics
 • Also psychology (Theory of Social Situations)
 • Mathematical theory of bargaining or action selection
 • Cooperative and Non-cooperative

• Attempt to find a set of strategies that will maximize my payoff no matter what my opponent does
 • Assumes rational players (you and the opponent)
 • Assumes each player knows everything about the game
 • Assumes the “payoff” is a complete measure of worth
 • A strategy is a complete plan for playing the entire game
Prisoner’s Dilemma

(years in jail)

<table>
<thead>
<tr>
<th></th>
<th>Don’t confess</th>
<th>Confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don’t confess</td>
<td>A=1; B=1</td>
<td>A=10; B=0</td>
</tr>
<tr>
<td>Confess</td>
<td>A=0; B=10</td>
<td>A=5; B=5</td>
</tr>
</tbody>
</table>
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Don’t confess</th>
<th>Confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t confess</td>
<td>A=1; B=1</td>
<td>A=10; B=0</td>
</tr>
<tr>
<td>Confess</td>
<td>A=0; B=10</td>
<td>A=5; B=5</td>
</tr>
</tbody>
</table>

• What strategy should A choose to minimize jail time?
 • Confess = less jail time no matter what the other person does
 • Nash Equilibrium
 • If both players work together each gets only 1 year
 • But can you trust the other player?

• Example of Public Goods Problems
 • Giving to charity
 • Pricing between companies
 • Social Security
Game Theory for Game Balance

- Game theory insures that no “strategy” is dominant
- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>Paper</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>Scissors</td>
<td>+1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Zero Sum game
 - One player’s loss is another player’s gain
- No single best strategy (no dominant)
 - Each column sums to zero
 - Optimal strategy is a mixed strategy (choose randomly)
What if different moves have different costs?
• Each move bets money - winner takes all (Zero Sum)
 • Rock: $3, Paper: $2, Scissors: $1
• Player B plays paper and player A plays rock
 • Player B outcome: +$3
 • Player A outcome: -$3
 • Player B ends up $6 ahead

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0</td>
<td>+6</td>
<td>-2</td>
</tr>
<tr>
<td>Paper</td>
<td>-6</td>
<td>0</td>
<td>+4</td>
</tr>
<tr>
<td>Scissors</td>
<td>+2</td>
<td>-4</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimal strategy (Nash Equilibrium) is mixed
• paper and scissors more frequently chosen
• must still choose rock occasionally
Starcraft Balance

<table>
<thead>
<tr>
<th></th>
<th>Protoss Wins</th>
<th>Human Wins</th>
<th>Human Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protoss Wins</td>
<td>Protoss Wins</td>
<td>Human Wins</td>
</tr>
<tr>
<td></td>
<td>Protoss Wins</td>
<td>Protoss Wins</td>
<td>Human Wins</td>
</tr>
<tr>
<td></td>
<td>Protoss Wins</td>
<td>Protoss Wins</td>
<td>Human Wins</td>
</tr>
</tbody>
</table>
Alpha Centauri

• 9 vehicle types

• Dominance determined by
 • Who attacks first
 • Terrain of attacks
 • State of vehicle (in air or on ground)
 • Morale of vehicle
 • Weapon (10 levels) and shielding (8 levels) technology
Fighting Game Balance

• Soul Caliber has 12 characters each with about 100 moves
 • How to be sure no character dominates another?

• Create a bunch of huge game matrices
 • One matrix for each pair of characters
 • Each move is a strategy

• Make sure the optimal strategy is mixed in each case
 • Can’t win by repeating a single “unbeatable” move
Game Theory and Computer Games

• Classical game theory has limited applications
 • Far too many “strategies”
 • Usually hidden information
 • Can be used for game balance

• Combinatorial game theory
 • Assumes sequential moves
 • Still requires no hidden information
 • Applies to parlor games
 • Chess
 • Checkers
 • Go
 • Connect 4 (Solved)

• Interactive games have too many “moves” in any situation
Game Trees

- Represent a game as a tree
 - Nodes are game states
 - Branches are moves
 - Leaves are wins/losses

- Choose next move by searching the tree
 - Search n levels deep
 - n depends on time available
 - Evaluate board positions
 - Propagate evaluations up
MiniMax

My Move: Maximize
Opponent Move: Minimize

My Move: Maximize
Opponent Move: Minimize
My Move: Maximize

Complication: what evaluation function to use?
Alpha Beta Pruning

My Move: Maximize (\(\geq \) alpha)

Opponent Move: Minimize (\(\leq \) beta)

Complication: horizon effect, can’t see far enough
Making a “fun” racing game

- As designers, we want to recreate racing, not just driving around on a track
- Competition is a crucial part of that
- Need to increase likelihood of a close race
- So we could count on players getting good or, essentially, we could cheat
How do we cheat well?

• We have to slow the front, speed the back
• Easiest way is just with speed
 • Cars in front slow down, in back, speed up
• This can be very obvious to players
 • Violate “fairness” and “consistency”
• And, worse, risks removing player feel of interaction
Dynamic Difficulty Adjustment

- This is a fairly well studied thing
- Game monitors player behavior
- As player struggles, game changes to try and help the player through it
- If player does well, game becomes harder
- Examples?
Risks of DDA approaches

• It seems obvious adaptive models are better for tuning an experience

• However, if a player realizes they are involved, they can exploit them

• Slowing down until the end of the race, for instance
Players use the rules

Players learn to win at the provided rule-system, not the ideas in your head

• They don’t learn the manual
• They don’t play what you thought was cool
 • If the way to “win” is to fight, you can say “hide” all you want, but they will fight
• They don’t only do “reasonable” things
• They poke and prod the systems, and exploit any weaknesses they can find
 • If there are bugs in the rules, they will find and exploit them, even if they enjoy it less