Elements of a Wireless Network

Lecture 38: Wireless Standards, Network Architectures, and Modulation Schemes

Elements of a Wireless Network

Elements of a Wireless Network

down- or forward-link (\downarrow): base station to wireless host up- or reverse-link (\uparrow): wireless host to base station

Mode of Operation

Mode of Operation

ad hoc mode

no base stations

nodes can only transmit to other nodes within link coverage

nodes organize themselves into a network: route among themselves

5G?

Cellular Network Architecture

Wireless Technologies Timeline

Corresponding Data Rates

Cellular Network Standards

Range: < 2-8 km Speed: < 250 km/h

	Standard	Modulation	Data rate (avg) in Kbps, K²=M	Multiple Access	
1G	AMPS	FM	-	FDMA	
	GSM	GMSK	9.6-14.4		
	GPRS	GMSK	115 (20-30)		
	EDGE	8PSK	384 (100-130)	TDMA	
2G	EDGE Evolution	16QAM/32QAM	1.89K (400)		
	IS-136	DQPSK	9.6		
	IS-95 (cdmaOne)	QPSK/OQPSK	9.6	CDMA	
	cdma2000 1xRTT	QPSK	114 (50-70)	CDMA	
	cdma2000 1xEVDO (Rel 0)		2K/150 (500/80)	CDMA w/ TDM	
	cdma2000 1xEVDO rev A	QF3N/0F3N/10QAWI	3K/1.8K (700/350)		
	WCDMA/UMTS	QPSK/BPSK	2K (220-320)	CDMA	
3G	UMTS HSPA	64QAM/16QAM+MIMO	28K/11K (500-1K)		
	UMTS HSPA+	64QAM/64QAM+MIMO	336K/72K (14K)		
	UMTS LTE	QPSK/QAM/OFDM+MIMO	73K-300K/36-75K	OFDMA	
	WiMAX Rel 1 (802.16e)	OFDM+MIMO	128K/56K	SOFDMA	
10	WiMAX Rel. 2 (802.16m)	OFDM+MIMO	100K	SOFDMA	
40	LTE-Advanced	OFDM+MIMO	1M/375-568K	SC-FDMA	

GSM (2G) and GPRS (2.5G) Network Architecture

UMTS (R99) Network Architecture

Overall 3GPP Network Architecture

RF Spectrum

Band	Uplink	Downlink	Total FDD	Comments
800 MHz	832-862	791-821	2 x 30 MHz	established or new
900 MHz	880-915	925-960	2 x 35 MHz	originally GSM, recently UMTS
1800 MHz	1710-1785	1805-1880	2 x 75 MHz	GSM
2100 MHz	1920-1980	2110-2170	2 x 60 MHz	original UMTS
2600 MHz	2500-2570	2620-2690	2 x 70 MHz	LTE

Why are 800, 1800 and 2600 bands popular?

IEEE Wireless 802.1x Standards

Standard	Year	Frequency Band (GHz)	Air Interface	Mbps (actual)	Range (m)	Speed
802.11	1987 (started) 1997 (standard)	24	DS-SS/DBPSK DS-SS/DQPSK	1 2		
802.11b (WiFi)	1999	2.4	CCK-BPSK CCK-QPSK	5.5 11 (5)	< 30/300 (outdoors)	walking
802.11a	1999	5	OFDM/24QAM 54		< 10/100	
802.11g	2003	2.4	OFDM/64QAM	1-54 (22)	< 30/300	
802.11n	2010 (est)	2.4 and 5	64QAM+MIMO	300 (144)	< 10/100	
802.11ac	12/2013	5	256QAM+MUMIMO	1.3K		
802.11ad (WiGig, Wireless USB)	12/2012	2.4, 5, and 60	MIMO	7К	LoS	
802.15.1 (Bluetooth)	1994 (started) 1999 (standard)	2.4	TDM-FHSS	.721-4	< 10 m	
802.16a (Line Of Sight)	2001	10-66	OFDM		< 50 km	N/A
802.16d (Non LOS)	2003	2-11	16QAM 64QAM	4-70 (1-4)	< 6-10 km	
802.16e (Mobile WiMAX, S. Korea WiBro)	2005, 2009	2.3, 2.5, 3.3, 3.5	ScalableOFDMA +MIMO		< 1-5 km	< 120 km/h
802.16m (WiMAX II)	2011	2.3, 2.5, 3.3, 3.5	ScalableOFDMA +MIMO	100 mobile 1K fixed	< 50 km	

omnitele

802.15: Personal Area Network

Replacement for cables (mouse, keyboard, headphones)

Ad hoc: no infrastructure

Less than 10 m diameter

Master/slaves:

• slaves request permission to send (to master)

master grants requests

802.15: evolved from Bluetooth specification

- a bluetooth network (piconet) supports 2-7 gadgets
- each gadget given a 12-bit address
- supports gadget authentication and data encryption
- uses frequency hopping spread spectrum (signal occupies different frequencies, in a given pattern and duration, as transmission progresses)
- uses FEC, CRC, and ARQ

Internet Protocol Stack

application: supporting network applications • HTTP, SMTP, FTP, etc.

transport: endhost-endhost data transfer • TCP, UDP

network: routing of datagrams from source to destination

• IP, routing protocols

link: data transfer between neighboring network elements: multiple access control • Ethernet, WiFi

physical: modulation methods, bits in the air _

air interface

Frequency-Shift Keying

Binary Frequency-Shift Keying (BFSK): uses 2 fixedamplitude (A) carrier signals, different in frequency (f), to represent 1 and 0

Phase-Shift Keying

Phase shift occurs at each bit transition

Binary Phase-Shift Keying (BPSK): A and f are fixed, 1 and 0 are different phases (φ) of the signal, e.g., start at $180^\circ = 0$, at $0^\circ = 1$

Differential Phase-Shift Keying (DPSK): phase difference is relative to previous bit, e.g., signal shifted by $90^\circ = 0$, by $270^\circ = 1$

M-ary Phase-Shift Keying

We're not limited to using only 2 phases

Quadrature Phase-Shift Keying (QPSK): each phase of the signal represents 2 bits, giving 4 values

- 8PSK: each phase represents 3 bits, giving 8 values
- reducing phase differences makes the signal more prone to noise and interference

Differential QPSK (DQPSK): phase difference is relative to previous bit

Amplitude+Phase Shift Keying

Quadrature* Amplitude Modulation (QAM):

- uses amplitude, in addition to phase, for bit encoding
- a combination of Amplitude Shift Keying (ASK) and Phase Shift Keying (PSK) used to encode/represent multiple bits

*k*QAM

16 QAM QPSK*

Example: 8QAM, 3 bits/symbol (8 codable states)

* Quadrature Phase-Shift Keying = 4QAM (no info from amplitude)

1/2

3/4

Polar and *I*/*Q* Representation

Difficult to modulate amplitude and phase simultaneously and separately, e.g., phase change can cause amplitude modulation and vice versa

Easier to represent the amplitude and phase of signal as a vector in polar coordinate:

- the 0° -axis is called the "in-phase" (I) axis
- the 90°-axis is orthogonal or "in quadrature" (Q) to the I axis
- projections of the signal vector on these axes is a rectangular representation of the polar diagram
- *I*-value: $A \cos \theta$
- Q-value: $A \sin \theta$

[HP, Cisco]

degrees

Signal Changes on the *I*/*Q* Plane

I/*Q* Signal Modulation

Data in the modulator is separated into 2 channels I and Q

- each channel modulates a carrier
- the two carriers have the same frequency and amplitude but the phase is offset by 90° ("in quadrature")

The two components are summed in a modulator circuit and transmitted as one composite signal

[Langton, HP, Cisco, wikipedia]

Polar and *I*/*Q* Representation

The *I* and *Q* signals are two independent components of the signal, changing one doesn't change the other

Signals that are in quadrature do not interfere with each other

[HP, Cisco, wikipedia]

QPSK on the I/Q Plane

The 4 values of QPSK can be represented on the I/Q plane :

- with phases 45°, 135°, 225°, and 315°
- theoretical bandwidth efficiency: 2 bits/sec/Hz

QPSK constellation:

225°

135°

315°

45°

Symbol

Transmitted

00

01

10

11

Q

0

[Cisco]

160AM Constellation

			_		κ.		
Symbol Transmitted	Carrier Phase	Carrier Amplitude		•	90°		
0000	225°	0.33	495%			450	
0001	255°	0.75	135	•		● ^{45°}	
0010	195°	0.75	1	-	-	-	
0011	225°	1.0					
0100	135°	0.33	1	•		•	
0101	105°	0.75	1 •	•		•	_
0110	165°	0.75	180°			0°	Ι
0111	135°	1.0	0010	0000			
1000	315°	0.33	0010	0000		•	
1001	285°	0.75	1				
1010	345°	0.75	0011	0001		•	
1011	315°	1.0	225°	0001		• 315°	
1100	45°	0.33	1				
1101	75°	0.75	1	2	70°		
1110	15°	0.75	1				
1111	45°	1.0	1				

16**Q**AM

As with QPSK, data is split into I and Q channels, but each channel can take on 2 phases and 2 amplitude values!

Four *I* values and four *Q* values: 4 bits per symbol, 2^4 = 16 states

Two bits are routed to each channel simultaneously, which are added and applied to the carriers

Theoretical bandwidth efficiency: 4 bits/sec/Hz

Zero Crossing

At 0, there's no voltage present:

- when signal is amplified, zero crossing causes artifacts (e.g., audio clicks) in the non-zero part of the output signal when gain is abruptly switched between gain settings
- when signal is filtered, voltage needs time to ramp up/down, zero crossing causes amplitude change
- in graphics rendering, zero crossing shows up as black lines
- in image processing, zero crossing usually marks boundary/edge of features \Rightarrow don't want extraneous zero crossings

Time

QPSK and Zero Crossing

In QPSK, carrier signal can phase shift by 180°, encountering zero crossing, causing carrier amplitude change when filtered or amplified

[Donadio]

OQPSK

Offset QPSK (OQPSK) a.k.a. Staggered QPSK (SQPSK): limit phase shift to 90° every half-symbol time (T) (by time-shifting the Q component)

QPSK vs. OQPSK

Offset QPSK (OQPSK) a.k.a. Staggered QPSK (SQPSK): limit phase shift to 90° every half-symbol time (*T*) (by time-shifting the *Q* component)

QPSK vs. OQPSK

QPSK can phase shift by 180°, whereas OQPSK is limited to 90° per half symbol time

[wikipedia]

GMSK

Minimum Shift Keying (MSK): OQPSK with half-cycle sinusoid component signal, instead of rectangular pulse, to make the phase change linear

• result turns out to be equivalent to FSK with only 1 bit/symbol

Gaussian MSK (GMSK):

MSK output passed through a Gaussian filter, resulting in narrower bandwidth requirement; used in GSM

[Langton, HP]

Wireless Link Characteristics

Multi-path propagation

- radio signal reflects off objects, walls, ground
- taking many paths of different path lengths, arriving at destination at slightly different times
- causing blurring of signal at the receiver

make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics

Differences from wired link

Decreasing signal strength:

- radio signal disperses as it travels greater distances
- and attenuates as it propagates through matter (path loss)

Interference from other sources

- standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., cordless phones)
- electromagnetic noise (e.g., microwave oven, motors) interferes as well

Wireless Link Characteristics

Given air interface: increased

- $\begin{array}{l} \text{power} \rightarrow \text{increased SNR} \rightarrow \\ \text{decreased BER} \end{array}$
- SNR: signal-to-noise ratio
- BER: bit error rate

Fundamental trade-off:

energy-saving vs. rate vs. range

- given SNR: choose air interface that meets
- BER requirement at highest throughput
- SNR may change with mobility: dynamically adapt the air interface to compensate (modulation technique, rate)
- all the latest standards have rate adaptation, including 802.11, 802.16, and LTE

Dealing with Bit Errors

Wired vs. wireless links

- wired: most loss is due to congestion
- wireless: higher, time-varying bit-error rate

Dealing with high wireless bit-error rates

- sender could increase transmission power
- requires more energy (bad for battery-powered hosts), and
- creates more interference with other senders
- stronger error detection and recovery
- more powerful error detection/correction codes
- link-layer retransmission of corrupted frames

Many TCP alternatives/extensions for wireless

• e.g., TCP Westwood uses an Explicit Loss Notification (ELN) bit

Multi-antenna (MIMO)

With bandwidth reaching Shannon's limit, future gain in bandwidth will come from smarter antenna use:

Beamforming (a.k.a., smart antenna/adaptive antenna system (AAS)): generate interfering patterns from multiple antennae such that the intended signal is strengthened, in the direction intended (Cf. noise cancellation headphones)

Spatial multiplexing: organized data into spatial streams that are transmitted simultaneously, on the same frequency, using multiple antennae; streams received over multiple antennae and separated using various detection algorithms

• increase in spectral efficiency (and resulting data rate) and quality of transmission

MIMO Antenna Technique

MIMO: Multi-Input/Multi-Output

- there's a propagation path between each transmit (Tx) and receive (Rx) antenna (a "MIMO path")
- $N \times M$ MIMO (e.g., $4 \times 4, 2 \times 2, 2 \times 3$)
- N transmit antennas
- *M* receive antennas
- total of *N*×*M* paths
- MIMO transmission increases throughput by beam forming, error correction across Tx antennae, signal interpolation across Rx antennae, network coding across multiple hosts (co-MIMO)

[Mlinarsky&Turner, Schill]