
Computer Networks

Lecture	37:	

PA4	Walk-Through	

Lab	7 Token-Bucket	Filter	
Client	communicates	flow	rate	to	server	

IMGDB_BPTOK	specifies	number	of	bytes	

covered	by	each	token	

Token	bucket	size,	in	tokens,	computed	from	

rwnd	and	mss 

Token	generation	rate,	in	tokens/sec,	computed	

from	user	specified	flow	rate	(frate),	in	Kbps	
	

Token	accounting	is	fractional	

	

3	lines	of	code	

Lab	7 Token-Bucket	Filter
Server	can	only	send	if	there’s	enough	token	in	

bucket	to	cover	a	segment	

Server	“consumes”	the	tokens	needed	to	send	a	

segment	

If	there	isn’t	enough	token	accumulated,	sleep	for	a	

certain	amount	of	time	

• amount	of	sleep	time	should	be	long	enough	to	generate	

sufficient	tokens	to	cover	1	segment	of	data,	plus	some	

random	fraction	of	bucket	size	worth	of	tokens	

Assume	no	token	accumulation	during	transmission	

About	12	lines	of	code	

Weighted-Fair	Queueing	

Fair	Queueing	(FQ):	

• compute	F:	finish	round,	the	
round	a	packet	finishes	service	

• simulates	fluid-flow	RR	in	the	

computation	of	F’s	
• serve	packets	with	the	

smallest	F	first	
	

Weighted-Fair	Queueing	(WFQ):	

• generalized	Round	Robin	
• each	VC/flow/class	gets	weighted	

amount	of	service	in	each	cycle	

• Pαi =	L
α

i/(ωµ),	Lαi	size	of	packet	

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7

µWFQ

12

123

t3

t1

t5

t6t8 t7t9

456
F=1

F=2

F=1

F=3

F=2

F=4
F=5

F=6

ω=2

ω=1

t2t4

ω=⅔

ω=⅓



Lab	8	Weighted-Fair	Queueing	

Server	accepts	download	requests	from	multiple	clients	

Command	line	options:	-l:	linkrate	(Mbps),	-g:	wait	for	

minimum	number	of	flows	before	starting	transmission	

(gated	start)	

Transmission	also	started	if	total	reserved	rate	equals	

link	rate	

No	rate	nor	flow	control	

Given	n	flows	with	total	reserved	rate	of	R,	and	link	rate	
of	µ,	each	client	is	served	(r/R)*µ	with	WFQ	

Compute	service	time	(in	rounds)	of	packet	with	length	L	
as	P = L/(r*µ/R)

Lab	8	Weighted-Fair	Queueing

Serve	packet	with	smallest	finish	round	first	

Total	reserved	rate	R	changes	as	flow	enters	and	departs	

Assume	no	packet	pre-emption	

Flow	departure/arrival	checked	after	sending	each	packet	

Finish	round	computed	for	each	flow	after	every	packet	

transmission	

Assume	no	idle	flow	(doesn’t	perform	round	catch	up)	

In	total,	less	than	25	lines	of	code	

PA	4	Link	Virtualization
Virtual	link	indistinguishable	from	physical	link	

Client	allocated	a	1	Mbps	virtual	link	on	a	100	Mbps	

physical	link	receives	at	most	1	Mbps	even	if	the	rest	

of	the	physical	link	is	idle	

Work	conserving	vs.	non-work	conserving	scheduler	

No	max-min	fair	sharing!	

PA4:	Transmission	Rate	

and	Inter-packet	Gap

The	gap	between	starts	of	transmission	

for	packet	i	(ti)	and	i+1 (ti+1),	sent	back-to-back,	

is	the	service/transmission	time	of	packet	i:	Li/µ,	
where	Li	is	the	size	of	packet	i,	and	µ is	the	link	
bandwidth	

•  the	inter-packet	gap	of	back-to-back	packets	of	a	flow	

belonging	to	a	FIFO	client	j	with	virtual	link	rate	µj,	is	Li/µj

	

To	simulate	a	lower	transmission	rate,	we	introduce	

idle/sleep	time	between	packets	

ti+1 tiLi/µ



PA4:	Virtualizing	a	Lower	BW	Link

f1f2f3f4 FIFO	 1	Mbps	

transmission	start	time:

f1
t1

f2
t2

f1
t1

f3
t3

f2
t2

f1
t1

f4
t4

f3
t3

f2
t2

f1
t1

f2f3f4 f3f4 f4

Packet	spacing	on	a	100	Mbps	link?	

FIFO	 100	Mbps	 f1

t1

f2

t’2

f4

t’3

f3

t’4

How	to	emulate	a	1	Mbps	link	on	a	100	Mbps	link?	

FIFO	 100	Mbps	 f1

t1

f2

t2

f3

t3

f4

t4

usleep(t2-t1) usleep(t3-t2) usleep(t4-t3) 

Not	to	scale	

PA4:	Virtualizing	a	Lower	BW	Link

w1

1	Mbps	

transmission	start	time:

w4
t4

w3
t3

w2
t2

w1
t1

WFQ	w2w4

100	Mbps	

w3

w1

t1

w2

t2

w3

t3

w4

t4

usleep(t2-t1) 

usleep(t3-t2) 

usleep(t4-t3) 

simulated	on	100	Mbps	link:

Not	to	scale	

PA4:	Virtualizing	2	Clients

1	Mbps	 w4
t6

w3
t4

w2
t2

w1
t1

Client	1:	
WFQ	

100	Mbps	

w1

t1

w2

t2

w3

t4

w4

t6

usleep(t2-t1) 

simulated	on	100	Mbps	link:

Client	2:	
FIFO	

1	Mbps	 f4
t6

f3
t5

f2
t3

f1
t1

imgdb	

f1

t1

f2

t3

f3

t5

f4

t6

Not	to	scale	

100	Mbps	

PA4:	Virtualization	Implementation

Client	1:	
WFQ	

100	Mbps	

Client	2:	
FIFO	

imgdb	

1	Mbps	

how	long	to	your	

next	transmission?	 Δt1

Δt1
t1t1

Δt3

Δt2
t2t3

Δt1
Δt1
Δt3
Δt2

Note:	only	works	because	we	assume	flows	don’t	go	idle	

Δt3-Δt2

Δt3-Δt2 Δt2

nextxmission	

0



PA4:	Assumptions

No	client	management:		

•  hard-code	2	clients,	one	FIFO,	one	WFQ	

•  refactor	Lab7	and	Lab8	imgdbs	into	3	classes:	FIFO,	WFQ,	
imgdb,	instantiate	FIFO	and	WFQ	within	imgdb	(about	30	
lines	in	imgdb.h)	

•  imgdb	command	line	option	–f:	fraction	of	link	bandwidth	

allocated	to	the	WFQ	client	(default:	IMGDB_INITFRAC)	
	

No	flow-setup	protocol:	

• assume	FIFO	client	supports	only	1	flow	

• FIFO	client/flow	accepted	only	if	at	least	IMGDB_MINFRAC	
fraction	of	physical	link	rate	is	still	available	

• use	netimg –r 0	hack	to	specify	FIFO	client’s	flow

PA4:	Assumptions

For	token	accumulation,	add	accumulation	time	

to	inter-packet	gap	

•  assume	no	token	accumulation	during	simulated	packet	

transmission	time	

	

Virtual	link	scheduling	takes	about	another	30	
lines	of	code	


