
Computer Networks

Lecture	36:	
QoS,	Priority	Queueing,	VC,	WFQ	

Circuit	Switching	
Network	resources	(e.g.,	bandwidth)	divided	into	“pieces”	
Pieces	allocated	to	and	reserved	for	calls	
Resource	idle	if	not	used	by	owner	(no	sharing)	
Ways	to	divide	link	bandwidth	into	“pieces”	
•  frequency	division	multiplexing	(FDM)	

	
•  time	division	multiplexing	(TDM)	

4	users	
Example:	frequency	

time	

frequency	

time	

Packet	Switching	
Each	end-to-end	data	stream		
divided	into	packets	

Packets	from	multiple	users	share	network	resources		

Each	packet	uses	full	link	bandwidth		

Resources	used	as	needed	

Resource	contention:		
• aggregate	resource	demand	can	exceed	amount	available	
•  congestion:	packets	queued,	wait	for	link	use	
•  store	and	forward:	packets	move	one	hop	at	a	time	

•  each	node	receives	complete	packet	before	forwarding	

Bandwidth	division	into	“pieces”	
Dedicated	allocation	
Resource	reservation	

Packet	Switching:	
Statistical	Multiplexing	

Sequence	of	A’s	and	B’s	packets	does	not	have	a	fixed	
pattern	⇒		statistical	multiplexing	

A

B

C
10	Mbps	
Ethernet	

1.5	Mbps	

D E

statistical	multiplexing	

queue	of	packets	
waiting	for	output	

link	

Packet	vs.	Circuit	Switching	
Packet	switching	allows	more	users	to	use	network!	

For	example:	
• 1	Mbps	link	
• each	user:		

•  sends	100	kbps	when	“active”	
•  active	10%	of	time	

	
circuit-switching:	10	users	
	
packet	switching:		with	35	users,	probability	that		
more	than	10	are	active	at	the	same	time	< .0004

N	users	
1	Mbps	link	

Pros	and	Cons	of	Packet	Switching	
Advantages:	great	for	bursty	data	
•  resource	sharing	
•  simpler,	no	call	setup	

Disadvantages:	excessive	congestion,	
packet	delay	and	loss	
• protocols	needed	for	reliable	data	transfer	
•  congestion	control	
• no	service	guarantee:	“best-effort”	service	

Better	than	Best-Effort	Service	
Approach:	deploy	enough	link	capacity	such	that	
congestion	doesn’t	occur,	traffic	flows	without	
queueing	delay	or	overflow	buffer	loss	
•  advantage:	low	complexity	in	network	mechanisms	

•  disadvantage:	high	bandwidth	costs,	most	of	the	time	
bandwidth	is	under	utilized	(e.g.,	2%	average	utilization)	

	
Alternative:	multiple	classes	of	service	
•  partition	traffic	into	classes	(not	individual	connections)	
•  network	treats	different	classes	of	traffic	differently	

Example:	HTTP	vs.	VoIP	Traffic	

1Mbps	VoIP	shares	1.5	Mbps	link	with	HTTP	
• HTTP	bursts	can	congest	router,	cause	audio	loss	
• want	to	give	priority	to	audio	over	HTTP	
•  packets	can	be	differentiated	by	port	number	or	

•  packets	can	be	marked	as	belonging	to	different	classes	

R1 R2

1.5	Mbps	link	

1	Mbps		
phone	

Priority	Queueing	
Send	highest	priority	
queued	packet	first	
• multiple	classes,	with	
different	priorities	

•  fairness:	gives	priority	to	
some	connections	

• delay	bound:	higher	priority	
connections	have	lower	delay	

• but	within	the	same	priority,	
still	operates	as	FIFO,	hence	
delay	not	bounded	

•  relatively	cheap	to	operate	
(O(log N)),	N	number	of	packets	in	queue	

high	priority	queue	

low	priority	queue	

arrivals	

classifier	

departures	

server	

1 3 2 4 5

5

5

2

2

1

1

3

3 4

4
arrivals	

departures	

packet	in	
service	

Traffic	Metering/Policing	
What	if	applications	misbehave	(VoIP	sends	higher	than	
declared	rate)?	

Marking	and/or	policing:	
•  force	sources	to	adhere	to	bandwidth	allocations	
•  provide	protection	(isolation)	for	one	class	from	others	
•  done	at	network	ingress	

R1 R2

1.5	Mbps	link	

1	Mbps		
phone	

packet	marking	and/or	policing	

Policing	Mechanisms	
Goal:	limit	traffic	to	not	exceed	declared	parameters	

Three	commonly	used	criteria:		

1. average	rate:	how	many	packets	can	be	sent	per	averaging	
time	interval	
•  crucial	question:	what	is	the	averaging	interval	length?	
•  100	packets	per	sec	or	6,000	packets	per	min	have	the	same	average!	

2. peak	rate:	packet	sent	at	link	speed,	inter-packet	gap	is	
transmission	delay	
•  e.g.,	6,000	packets	per	min	(ppm)	avg.;	1,500	ppsec	peak	

3. (max.)	burst	size:	maximum	number	of	packets	allowed	to	
be	sent	at	peak	rate	without	intervening	idle	period	

Token-Bucket	Filter	
Limit	packet	stream	to	specified	
burst	size	and	average	rate		
	
	
	
	
• bucket	can	hold	at	most	b	tokens	
• new	tokens	generated	at	the	rate	of	r	tokens/sec	
• new	tokens	dropped	once	bucket	is	full	
• packet	can	be	sent	only	if	there’s	enough	tokens	
in	buffer	to	cover	it		

• assuming	1	token	is	needed	per	packet,	over	
interval	of	length	t:	number	of	packets	metered	
out	is	≤	(rt + b)

Circuit	vs.	Packet	Switching	
Packet	switching:	data	sent	through	the	
network	in	discrete	“chunks”	
	
Circuit	switching:	dedicated	circuit	per	call	
• end-to-end	resources	reserved	for	calls	

•  link	bandwidth,	switch	capacity	
•  call	setup	required	

• dedicated	resources:	no	sharing	
•  guaranteed	performance	
•  resource	idle	if	not	used	by	owner	

Packet-Switched	Networks	
No	call	setup	at	network	layer	

No	state	to	support	end-to-end	connections	at	routers	
•  no	network-level	concept	of	“connection”	
•  route	may	change	during	session	

Packets	forwarded	using	destination	host	address	
•  packets	between	same	source-destination	pair	may	take	
different	paths	

application	
transport	
network	
data	link	
physical	

application	
transport	
network	
data	link	
physical	

1.	send	data	 2.	receive	data	

Pros	and	Cons	of	Packet	Switching	
Advantages:	great	for	bursty	data	
•  resource	sharing	
•  simpler,	no	call	setup	

Disadvantages:	excessive	congestion,	packet	
delay	and	loss	
•  protocols	needed	for	reliable	data	transfer	
•  congestion	control	
•  no	service	guarantee	of	any	kind	

How	to	provide	circuit-like	quality	of	service?	
•  bandwidth	and	delay	guarantees	needed	for	
multimedia	apps	

Virtual	Circuits	(VC)	
Datagram	network	provides	network-layer	
connectionless	service	

VC	network	provides	network-layer	connection-
oriented	service	

Analogous	to	the	transport-layer	services,	but:	
•  service	is	host-to-host,	as	opposed	to	socket-to-socket	
•  implementation	in	network	core	

Source-to-destination	path	behaves	much	like	a	
telephone	circuit	
•  in	terms	of	performance,	and	
• network	actions	along	the	path	

Virtual	Circuits	
A	VC	comprises:	
1.  path	from	source	to	destination	

•  each	call	must	be	set	up	before	data	can	flow	
•  requires	signalling	protocol	

•  fixed	path	determined	at	call	setup	time,	
remains	fixed	throughout	call	

•  every	router	on	path	maintains	state	
for	each	passing	connection/flow	

•  link,	router	resources	(bandwidth,	buffers)	
may	be	allocated	to	VC	

2. VC	numbers,	one	number	for	each	link	along	path	
•  each	packet	carries	a	VC	identifier	(not	destination	host	address)	

3.  entries	in	forwarding	tables	in	routers	along	path	

Virtual	Circuits	
Signalling	protocol:	
• used	to	setup,	maintain,	teardown	VC	
• e.g.,	ReSource	reserVation	Protocol	(RSVP)	

		

application	
transport	
network	
data	link	
physical	

application	
transport	
network	
data	link	
physical	

1.	initiate	call	 2.	incoming	call	

3.		accept	call	4.	call	connected	

5.	data	flow	begins	 6.	receive	data	

VC	Forwarding	Table	

Forwarding	table	on	router	NW:	

Routers	maintain	connection	state	information!	

Packet	belonging	to	a	VC	carries	a	VC	number	

VC	number	must	be	changed	for	each	link	

New	VC	number	obtained	from	forwarding	table	

Examples:	MPLS,	Frame-relay,	ATM,	PPP	

12 22 32

1 2
3

VC	number	

interface	
number	

NW	

incoming	
interface	

incoming	
VC#	

outgoing	
interface	

outgoing	
VC#	

1 12 2 22

2 63 1 18

3 7 2 17

1 97 3 87

… … … …

Per-VC	Resource	Isolation	
To	provide	circuit-like	quality	of	service	
•  resources	allocated	to	a	VC	must	be	isolated	from	other	
traffic	

	
Bit-by-bit	Round	Robin:	
•  cyclically	scan	per-VC	queues,	
sending	one	bit	from	each	VC	
(if	present)	

•  1	round,	R(),	is	defined	as	all	
non-empty	queues	have	been	
served	1	quantum	
•  R(t5)	=	2	
•  time	at	Round	3?	Round	4?	

A.k.a.	Generalized	Processor	Sharing	(GPS)		

µ
RR

1 bit

1234

123

5 1234

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10t11

Fluid-Flow	Approximation	
A	continuous	service	model	
•  instead	of	thinking	of	each	quantum	as	
serving	discrete	bits	in	a	given	order	

• think	of	each	connection	as	a	fluid	stream,	
described	by	the	speed	and	volume	of	flow	

At	each	quantum	the	
same	amount	of	fluid	
from	each	(non-empty)	
stream	flows	out	
concurrently		

µRR

R1R2R3R4R5

Packetized	Scheduling	
Packet-by-packet	Round	Robin:	
• cyclically	scan	per-flow	queues,	sending	one	
packet	from	each	flow	(if	present)	

• Problem:	gives	bigger	share	to	
flows	with	big	packets	

	
Packet-by-packet	Fair	Queueing:	
• compute	F:	finish	round,	the	round	a	
packet	finishes	service	

• simulates	fluid-flow	RR	in	the	
computation	of	F’s	

• serve	packets	with	the	
smallest	F	first	

µ
RR

12

123

t2

t3

t5

t6t8 t7t9

456

t1t4

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7

Start	and	Finish	Rounds	

When	does	packet	i	finish	service?		
Fαi	=	Sαi	+	Pαi,		
where	Pαi	is	the	service	time	(in	
rounds)	of	packet	i	and	Sαi	the	
service	start	round	
	
At	what	round	does	packet	i	
of	flow	α	start	seeing	service?		
Sαi	=	MAX(Fαi–1,	A

α
i)	

• Sαi	=	Fαi–1	if	there	is	a	queue,	A
α

i	otherwise	
• Aαi	=	R(tαi):	round	at	the	time	packet	i	arrives	

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7

Round#	vs.	Wall-Clock	Time	
Let:	
• time:	wall-clock	time	
• round:	virtual-clock	time	
• µ	=	1	unit	
•  tαi:	arrival	time	of	packet	i	of	flow	α
• Nac(t):	#active	flows	at	time	t	

Computing	the	rate	of	change:		
a:	Nac	=	1,	∂R/∂t	=	µ/Nac(t)	=	1,		
b:	Nac	=	2,	∂R/∂t	= ½,	δ2 	= 2∗δ1	
c:	at	the	beginning,	Nac	=	1,	∂R/∂t		=	1,		
halfway	serving	packet	i,	a	packet	belonging	to	
another	flow	arrives,	Nac	=	2,	∂R/∂t	=	½		

As	Nac(t)	changes,	finish	round	stays	the	same,		
actual	time	stretches	

a bc

Wall-clock time

Round#

Pi
α

Si
α

Fi
α

ti
α ti

α+δ1 ti
α+δa ti

α+δ2

Round	Computation	Example	
Scenario:	
• flows	A	has	1	packet	of	size	1	arriving	at	time	t0
• flows	B	and	C	each	has	1	packet	of	size	2	arriving	at	time	t0
• flow	A	has	another	packet	of	size	2	arriving	at	time	t4

	
Slope	(∂R/∂t):	
a = ⅓, b = ½,�
c = ⅓, d = 1

What	is	the	arrival	
round	of	A’s	2nd	packet?	
R(tA

2) = 1.5
a

b

c

Wall-clock time

Round#

0 3 5.5 7

d

4

1

1.5

2

3.5

F1
A

F1
B
F1
C

F2
A

assuming fluid-flow approximation

SA2 = A
A
2

Arrival	Round	Computation	
When	packet	i	of	an	active	flow	arrives,	its	finish	round	is	
computed	as	Fαi	=	Fαi–1	+	Pαi ,	where	Fαi–1	is	the	finish	
round	of	the	last	packet	in	α’s	queue	

If	flow	α	is	inactive,	there’s	no	packet	in	its	queue,	
Fαi	=	Aαi	+	Pαi ,	how	do	we	compute	Aαi?	

If	flow	α	has	been	inactive	for	Δt	time	and	there	has	been	Nac	
flows	during	the	whole	time,	we	can	perform	round	catch	up:	
Aαi	=	Fαi–1	+	Δt(1/Nac)	

Iterated	deletion:	if	Nac	has	changed,	one	or	more	times,	over	
Δt,	round	catch	up	must	be	computed	in	piecewise	fashion,	
every	time	Nac	changes	�	expensive	

Weighted	Fair	Queueing	

Weighted-Fair	Queueing	(WFQ):	
• generalized	Round	Robin	
• each	VC/flow/class	gets	weighted	
amount	of	service	in	each	cycle	

• Pαi =	Lαi/(ωµ),	Lαi	size	of	packet	

µWFQ

12

123

t3

t1

t5

t6t8 t7t9

456
F=1

F=2

F=1

F=3

F=2

F=4
F=5

F=6

ω=2

ω=1

t2t4

ω=⅔

ω=⅓

(Weighted)	Fair	Queueing	
Credit	accumulation:	
• allows	a	flow	to	have	a	bigger	share	if	it	has	been	idle	
• discouraged	because	it	can	be	abused:	accumulate	
credits	for	a	long	time,	then	send	a	big	burst	of	data	

	
Characteristics	of	(W)FQ:	
• max-min	fair	
• bounded	delay	
• expensive	to	implement	

Max-Min	Fair	
In	words:	max-min	fair	share	maximizes	minimum	
share	of	flows	whose	demands	have	not	been	fully	
satisfied	

1. no	flow	gets	more	than	its	request	

2. no	other	allocation	satisfying	condition	1	has	a	
higher	minimum	allocation	

3. condition	2	remains	true	as	we	remove	the	flow	
with	minimal	request	

Max-Min	Fair	
Let:	

µtotal:	total	resource	(e.g.,	bandwidth)	available	

µi:	total	resource	given	to	(flow)	i	
µfair:	fair	share	of	resource	

ρi:	request	for	resource	by	(flow)	i		
	
Max-Min	fair	share	is	µi	=	MIN(ρi, µfair)

µtotal	=	∑	µi,	i = 1 to n

Max-Min	Fair	Share	Example	
Let:	
µtotal = 30

	
	
Initialy	µfair = 10	
ρC	=	8,	so	unused	resource	(10 – 8 = 2)	is	divided		
evenly	between	flows	whose	demands	have	not	
been	fully	met	
	
Thus,	µfair	for	A	and	B	= 10 + 2/2 = 11

i ρi µi

A 12 11
B 11 11
C 8 8

Providing	Delay	Guarantee	
Token	bucket	filter	and	WFQ	combined	provides	
guaranteed	upper	bound	on	delay	

	
	
	
	
	
	
	
	
Same	inefficiency	issue	as	with	circuit	switching:	allocating	non-
sharable	bandwidth	to	flow	leads	to	low	utilization	if	flows	don’t	
use	their	allocations	

Dmax = b/μf
QoS	guarantee!	

WFQ		

token	rate,	r

bucket	size,	b

per-flow	
rate,	μf

arriving	
traffic	

arriving	
traffic	

Limitations	of	(W)FQ	

Round	computation	expensive:	
must	re-compute	R	every	time	
number	of	active	flows	changes	
	
Unless	packet	transmission	can	be	pre-empted,	
fairness	is	“quantized”	by	minimum	packet	size	
• once	a	big	packet	starts	transmission,	newly	arriving	
packets	with	smaller	finish	times	must	wait	for	
completion	of	transmission	

• flows	with	relatively	smaller	packets	will	suffer	this	
more	than	flows	with	larger	packets	

µ
FQ

12

123

t3

t1

t8

t4t6 t5t9

456
F=1

F=2

F=2

F=3

F=4

F=4
F=5

F=6

t2t7
Work	Conservation	
Work-conserving	schedulers:	
• doesn't	go	idle	whenever	there	is	packet	in	queue	
• makes	traffic	burstier	
•  could	require	more	buffer	space	downstream	
	
Non-work	conserving	schedulers:	
• only	serve	packets	whose	service	times	have	arrived	
• more	work	to	determine	whether	packets'	service	times	
have	arrived	

•  smooth	out	traffic	by	idling	link	and	pacing	out	packets	

