
Computer Networks


Lecture	34:	
Multiplayer	Gaming	

Networking	in	Games	
Differentiate	between	in-game	networking	
and	backend	infrastructure	

Backend	infrastructure:	
•  lobby	where	gamers	meet	
• authentication	and	key	checking	
• accounting	and	billing	
• ranking	and	ladder	
• reputation	and	black	list	
• buddy	lists,	clans,	and	tournaments	
• mods	and	patches	management	
• virtual	economy	
• beware	of	DDoS	

Issues:	scalability,	adapting	to	failure,	security	

In-game	Networking	Topics	
Topology:		
•  client-server	or	peer-to-peer	

Computational	model:		
• distributed	object	vs.	message	passing	

Bandwidth	requirement	

Latency	requirement	

Consistency	

Which	transport	protocol	to	use?	
• TCP,	UDP,	reliable	UDP	

Peer-to-Peer	
Peer-to-peer	with	O(N2)	unicast	connections:	
•  each	player	is	connected	directly	to	all	other	players	
•  each	player	simulates	the	whole	world	
•  advantages:	reduced	latency,	no	single	point	of	failure	
•  disadvantages:	easier	to	cheat,	not	scalable:	each	client	
must	send	and	receive	N-1	messages		

Player

Player

Player

Player

Player

Player

Player

Player



Client-Server	
Two	flavors:	
•  ad-hoc	servers:	death	match	
• dedicated	servers:	MMOG	

Two	types	of	clients:	
•  clients	simulate	world,	server	has	authoritative	state:	
allows	for	client-side	dead	reckoning	(Quake	III/Half-Life)	

•  clients	as	dumb	terminal,	all	simulations	at	server:	useful	
for	thin	clients,	e.g.,	cell	phones,	and	persistent-world	
MMOG	

Client-Server	
Advantages:		
•  each	client	sends	only	to	server,	server	can	aggregate	moves	
• dedicated	servers	makes	cheat-proofing	easier	
•  server	can	be	better	provisioned	
• persistent	states	(for	MMOG)	
	
Disadvantages:		
•  longer	delay	
• server	bottleneck	
• single	point	of	failure	
• needs	server	management	

Server

Player

Player

Player

Player

Player

Player

Player

Server	Architecture:	Replicated
The	world	replicated	at	each	server	(shard)	
•  each	shard	contains	an	independent	world	
• players	go	to	specific	shard	
	
Most	MMORPG	

Shard1

Player

Player

Player

Player

Player

Player

Shard2

Player

Player

Player

PlayerPlayer

Server	Architecture:	Mirrored
The	world	replicated	at	each	server	(mirror)	
•  all	the	worlds	are	synchronized	
• players	see	everyone	across	all	mirrors	
	
Mirrors	must	be	kept	consistent	

Mirror1

Player

Player

Player

Player

Player

Player

Mirror2

Player

Player

Player

PlayerPlayer

High-speed
Connection



Server	Architecture:	Partitioned
The	world	is	split	into	regions		
•  each	region	is	hosted	by	a	different	server	
•  example:	Second	Life	
	
Servers	must	be	kept	consistent	

Server1

Player

Player

Player

Player

Player

Player

Server2

Player

Player

Player

PlayerPlayer

High-speed
Connection

Distributed	Computing	Model	

Game	companies	have	their	preferred	
computing	model	and	would	provide	high-
level	libraries	to	implement	the	model	
	
Two	common	models:	
• distributed	objects	
• message	passing	

Distributed	Objects	
Characters	and	environment	maintained	as	objects	

Player	inputs	are	applied		
to	objects	(at	server)	

Changes	to	objects		
propagated	to	all		
players	at	end	of		
game	loop	

Object	update	usually		
implemented	as	one		
or	more	library	calls	

Initialization Overall Game
Control

Game Session
Control

Local Player 
Input

Send & Receive
Object Updates

Main Logic:
- update objects
- game AI
- physics
- collision

Render scene
to buffer

Copy buffer to
display

Time sync

Message	Passing	
Player	inputs	(either	button	pushes	or	higher-level	
movements)	are	sent	to	other	players	(or	server)	

All	players	update	their		
own	game	state		

Or	server	updates	the		
global	game	state	and		
sends	it	out	to	all	players	

Initialization Overall Game
Control

Game Session
Control

Local Player 
Input

Receive Remote 
Player(s) Input

Main Logic:
- update states
- game AI
- physics
- collision

Send
Local Input

Render scene
to buffer

Copy buffer to
display

Time sync



Multiplayer	Gaming	Traffic	

What	information	is	sent	in	a	multiplayer	game?	
• depends	on	your	computing	model	

• distributed	objects:	game	state,	e.g.,	coordinates,	status,	
action,	facing,	damage	

• message	passing:	user	keystrokes,	e.g.,	commands/moves	
For	RTS:	1	every	1.5-2	sec,	up	to	3-4	commands/sec	during	
battles	(but	some	of	these	are	redundant	and	can	be	
filtered	out)	

In-game	Networking	Topics	
Topology:		
•  client-server	or	peer-to-peer	

Computational	model:		
• distributed	object	vs.	message	passing	

Bandwidth	requirement	

Latency	requirement	

Consistency	

Which	transport	protocol	to	use?	
• TCP,	UDP,	reliable	UDP	

Bandwidth	Requirement	

Bandwidth	requirement	has	been	HIGHLY	optimized	
• even	with	audio	chat,	takes	up	at	most	8	Kbps	
• so,	bandwidth	is	not	a	big	issue	

•  but	note	the	asymmetric	nature:		
for	N	players,	you	receive	N-1	times	the	amount	of	bytes	you	send	out	

• must	be	continually	vigilant	against	bloat	
	
However,	with	player-created	objects	and	worlds,	
bandwidth	becomes	an	issue	again:	use	streaming,	
levels	of	details,	and	pre-fetching	

Latency	Requirement	
How	is	latency	different	from	bandwidth?	
	
Tolerable	round-trip	latency	thresholds:		
•  RTS:	≤ 250	ms	not	noticeable,		

250-500	ms	playable,	>	500	ms	noticeable	
•  FPS:	≤	150	ms	preferred	
•  car	racing:	<	100	ms	preferred,		

100-200	ms	sluggish,	≥	500	ms,	car	out	of	control	
	
Players'	expectation	can	adapt	to	latency	
• it	is	better	to	be	slow	but	smooth	than	to	be	jittery	



Latency	Effect:	Consistency	
Problem	statement:	

Case	1:	
	

Case	2:	
	
In	both	cases:	
• at	Player	1:	Player2’s	move	arrives	after	Player1’s	fire	
• at	Player	2:	Player1’s	fire	arrives	after	Player2’s	move	

Should	Player2	be	considered	shot	in	both	cases?	
Or	only	in	the	second	case?	

time
player1 player2

movefire

movefire

Synchronization	

Synchronization	::=	
order	moves	by	their	times	of	occurrence	

Assume	globally	synchronized	clocks	

Out-of-synch	worlds	are	inconsistent	

Small	inconsistencies	not	corrected	can	lead	to	large	
compounded	errors	later	on	(deer	not	speared	means	
one	less	villager	means	slower	barrack	build,	etc.)	

When	to	Render	a	Move?	

How	long	do	you	have	to	wait	for	the	other	
players'	moves	before	rendering	your	world?	

time
player1 player2

movefire

movefire

movefire

X

Lock-Step	Protocol	
Algorithm:	each	player	receives	all	other	
players’	moves	before	rendering	next	frame	
	
	
	
	
	
	
Problems:	
•  long	latency	on	the	Internet	
• variable	latencies	�	jittery	game	speed	
• game	speed	determined	by	the	slowest	player	

time
Player1 Player2

synchronize
moves and
render scene



Bucket	Synchronization	
Algorithm:	
• buffer	both	local	and	
remote	moves	

• play	them	in	the	future	
•  each	bucket	is	a	round,	
say	of	about	200	ms	

• bucket	size	can	be	
adapted	to	measured	RTT	

Smoother	play,	but:	
• game	speed	(bucket	size)	still	
determined	by	slowest	player	

• what	if	a	move	is	lost	or	late?	

time

Player1 Player2

synch moves
and render scene

a player can have
multiple moves
per turn

X

Pessimistic	Consistency	
Every	player	must	see	the	exact	same	world	
• each	player	simulates	its	own	copy	of	the	world	
• all	the	worlds	must	be	in	synch	
• uses	bucket	synchronization	
• each	player	sends	moves	to	all	other	players	
• dropped	packets	are	retransmitted	
• a	designated	host	collects	measured	RTTs	from	all	players	and	
set	future	bucket	sizes	

	
Problems	of	bucket	synchronization:	
• variable	game	speed	if	lost	packets	must	be	retransmitted	
•  speed	determined	by	the	slowest	player	

Dead	reckoning,	a.k.a.	client-side	prediction	
• extrapolate	next	move	based	on	prior	moves	

•  e.g.,	compute	the	velocity	and	acceleration	of	objects	to	dead	reckon	

	
•  players	can	help	by	sending	velocity	and	acceleration	along	
•  obviously,	only	works	if	velocity	and	acceleration	haven't	changed	

	
In	case	of	inconsistency:	
• server	assumed	to	always	have	authoritative	view	
• when	clients	correct	(roll-back)	inconsistent	views,	
players	may	experience	“warping”	

Dead	Reckoning	and	Roll-back	

v

move lost or late,
dead reckoned

Optimistic	Consistency	with	Roll-back	
Observation:	dead	reckoning	doesn't	have	to	be	
limited	to	lost	packets!	

Half-Life:	
• each	client	plays	back	its	own	moves	immediately	and	
sends	the	moves	to	server	

• each	client	also	dead	reckons	the	other	players’	moves	
• server	computes	world	and	sends	its	authoritative	
version	to	all	clients	

• clients	reconcile	dead	reckoned	world	with	server's	version	
• only	need	to	synchronize	important	events,	but	must	be	
careful	that	dead	reckoning	errors	don't	get	compounded	
over	time	

• can	result	in	some	jerkiness	and	perception	of	
“shooting	around	corner”	



Shooting	Around	Corner	

X 

Consistency:	Correctness	
For	consistency	all	user	input	must	pass	through	the	
synchronization	module	
	
Be	careful	with	random	
number	generators:	isolate	
the	one	used	for	game-state	
updating	from	other	uses	
(ambient	noise	etc.)	
	
Design	for	multiplayer	from	the	start	
• single-player	becomes	a	special	
case	of	single-client	multiplayer	game	

Initialization Overall Game
Control

Game Session
Control

Local Player 
Input

Receive Remote 
Player(s) Input

Main Logic:
- consistency
- game AI
- physics
- collision

Send
Local Input

Render scene
to buffer

Copy buffer to
display

Time sync

Consistency:	Smoothness	
For	smoother	playback,	decouple	bucket	size	from	
frame	rate	
	
Immediately	render	local	moves	
	
Modify	game	design	to	allow	for	latency	and	loss,	e.g.,	
• make	player	wait	for	elevator	
• teleportation	takes	time	
• require	multiple	hits	per	kill,	even	snipers	can	miss	
• let	bullet/missile	have	flying	time	
• build	in	inertia,	don't	allow	sudden	changes	in	facing	

Reducing	Consistency	Check	
Do	area-of-interest	management	
(a.k.a.	relevance	filtering):	
• aura:	how	far	you	can	be	sensed	
(ninjas	and	cloaked	ships	have	aura	of	0)	

• nimbus:	how	far	you	can	sense	
(empath	and	quantum-sensor	have	large	nimbus)	

	
Perform	consistency	check	only	when	B	is	within	A's	
nimbus	and	A	is	within	B's	aura	
	
Aura	and	nimbus	are	defined	for	a	given	set	of	“game	
technology”	(e.g.,	cloaking	device,	quantum	sensor,	etc.)	



Which	Transport	Protocol	to	Use?	
Gaming	requirements:	
•  late	packets	may	not	be	useful	anymore	
•  lost	information	can	sometimes	be	interpolated	
• (though	loss	statistics	may	still	be	useful)	
	
Use	UDP	in	game:	
•  can	prioritize	data	
•  can	perform	reliability	if	needed	
•  can	filter	out	redundant	data	
•  use	soft-state	
•  send	absolute	values,	not	deltas	
•  or	if	deltas	are	used,	send	``baseline''	data	periodically	
• must	do	congestion	control	if	sending	large	amount	of	data	


