'CQ8
o COMPUTER NETWORKS

Lecture 34:
Multiplayer Gaming

In-game Networking Topics

Topology:
- client-server or peer-to-peer

Computational model:
« distributed object vs. message passing

Networking in Games

Differentiate between in-game networking
and backend infrastructure

Backend infrastructure:

* lobby where gamers meet

* authentication and key checking

* accounting and billing

* ranking and ladder

* reputation and black list

* buddy lists, clans, and tournaments
* mods and patches management

* virtual economy

* beware of DDoS

Issues: scalability, adapting to failure, security

Peer-to-Peer

Peer-to-peer with O(N?) unicast connections:

- each player is connected directly to all other players

« each player simulates the whole world

+ advantages: reduced latency, no single point of failure

« disadvantages: easier to cheat, not scalable: each client
must send and receive N-1 messages

Player
Player Player
Player Player
Player Player

Player

Client-Server Client-Server

Two flavors: Advantages:
« ad-hoc servers: death match - each client sends only to server, server can aggregate moves
- dedicated servers: MMOG - dedicated servers makes cheat-proofing easier

« server can be better provisioned

Two types of clients: - persistent states (for MMOG)

« clients simulate world, server has authoritative state:

allows for client-side dead reckoning (Quake Ill/Half-Life) Dlsadvantages:

I dumb terminal, all simulati ful - longer delay
e cllents as dum termlna,a simulations at server: usefu « server bottleneck

for thin clients, e.g., cell phones, and persistent-world « single point of failure

MMOG * needs server management
Player
Server Architecture: Replicated Server Architecture: Mirrored
The world replicated at each server (shard) The world replicated at each server (mirror)
« each shard contains an independent world « all the worlds are synchronized
- players go to specific shard - players see everyone across all mirrors
Most MMORPG

Mirrors must be kept consistent
Shard1 Shard2

High-speed

Connection .
Mirrorl Mirror2

Player

Player Player

Player Player

Server Architecture: Partitioned

The world is split into regions
- each region is hosted by a different server
- example: Second Life

Servers must be kept consistent

High-speed

Connection
Server2

Distributed Objects

Characters and environment maintained as objects

Player inputs are applied riaizaion—» overail Game ——+ Game session
. Control -— Control
to objects (at server)

. e e Render scene
Changes to objects »--0 ‘°j““ef
propagated to all 1 - Conybutterto
players at end of © 7
»-- @ Local Player
game loop | S "
Object update usually Main Logic:
. - update objects
implemented as one “game A
. Send & Receive :co issli(;sn
or more library calls Obiect Updates - ”l
" {Time sync!

Distributed Computing Model

Game companies have their preferred
computing model and would provide high-
level libraries to implement the model

Two common models:
« distributed objects
* message passing

Message Passing

Player inputs (either button pushes or higher-level
movements) are sent to other players (or server)

Initialization ——— Overall Game

Game Session

All players update their Cortrol Cortrol
own game State @ R Render scene
»-- @ to buffer
Or server updates the | Copybutierto
T display
global game state and ® L
: »-- 0
sends it out to all players Loca Player
Receive Remote Send l
Player(s) Input Local Input
Main Logic:

- update states
- game Al

- physics

- collision

Multiplayer Gaming Traffic

What information is sent in a multiplayer game?
« depends on your computing model

« distributed objects: game state, e.g., coordinates, status,
action, facing, damage

» message passing: user keystrokes, e.g., commands/moves
For RTS: every sec,upto commands/sec during
battles (but some of these are redundant and can be
filtered out)

Bandwidth Requirement

Bandwidth requirement has been HIGHLY optimized
* even with audio chat, takes up at most Kbps

* 50, bandwidth is not a big issue

* but note the asymmetric nature:
for N players, you receive N-1 times the amount of bytes you send out

» must be continually vigilant against bloat

However, with player-created objects and worlds,
bandwidth becomes an issue again: use streaming,
levels of details, and pre-fetching

In-game Networking Topics

Bandwidth requirement
Latency requirement
Consistency

Which transport protocol to use?
« TCP, UDP, reliable UDP

Latency Requirement

How is latency different from bandwidth?

Tolerable round-trip latency thresholds:

e RTS: < ms not noticeable,
250-500 ms playable, > 500 ms noticeable

e FPS: <150 ms preferred

» carracing: < 100 ms preferred,
100-200 ms sluggish, > 500 ms, car out of control

Players' expectation can adapt to latency
« it is better to be slow but smooth than to be jittery

Latency Effect: Consistency

Problem statement:

Case 1: time

Case 2:

In both cases:

player1

- at Player 1: Player2’s move arrives after Playerl’s fire

- at Player 2: Playerl’s fire arrives after Player2’s move

Should Player2 be considered shot in both cases?

Or only in the second case?

When to Render a Move?

How long do you have to wait for the other
players' moves before rendering your world?

player1 player2
time

player2

Synchronization

Synchronization ::=
order moves by their times of occurrence

Assume globally synchronized clocks
Out-of-synch worlds are inconsistent

Small inconsistencies not corrected can lead to large
compounded errors later on (deer not speared means
one less villager means slower barrack build, etc.)

Lock-Step Protocol

Algorithm: each player receives all other
players’ moves before rendering next frame

Player1 Player2

time pe

synchronize
moves and
render scene

Problems:
« long latency on the Internet

« variable latencies = jittery game speed

- game speed determined by the slowest player

Bucket Synchronization

Algorithm: Player1 Player2
« buffer both local and .
remote moves time |
. e synch moves
« play them in the future [~ and render scene
« each bucket is a round, }\ %
[~ a player can have
say of about 200 ms “ % \\\? =~ multiple moves
« bucket size can be [\ (per turn
adapted to measured RTT | X

Smoother play, but:

» game speed (bucket size) still
determined by slowest player

» what if a move is lost or late?

Dead Reckoning and Roll-back

Dead reckoning, a.k.a. client-side prediction

- extrapolate next move based on prior moves
- e.g., compute the velocity and acceleration of objects to dead reckon

lost or late
e o o o - :
dead reckoned

- players can help by sending velocity and acceleration along
« obviously, only works if velocity and acceleration haven't changed

In case of inconsistency:

« server assumed to always have authoritative view

« when clients correct (roll-back) inconsistent views,
players may experience “warping”

Pessimistic Consistency

Every player must see the exact same world
« each player simulates its own copy of the world

« all the worlds must be in synch

« uses bucket synchronization

- each player sends moves to all other players

- dropped packets are retransmitted

- a designated host collects measured RTTs from all players and
set future bucket sizes

Problems of bucket synchronization:
« variable game speed if lost packets must be retransmitted
- speed determined by the slowest player

Optimistic Consistency with Roll-back

Observation: dead reckoning doesn't have to be
limited to lost packets!

Half-Life:

« each client plays back its own moves immediately and
sends the moves to server

« each client also dead reckons the other players’ moves

« server computes world and sends its authoritative
version to all clients

« clients reconcile dead reckoned world with server's version

« only need to synchronize important events, but must be
careful that dead reckoning errors don't get compounded
over time

e can result in some jerkiness and perception of
“shooting around corner”

Shooting Around Corner

o> 000 O®

Consistency: Smoothness

For smoother playback, decouple bucket size from
frame rate

Immediately render local moves

Modify game design to allow for latency and loss, e.g.,
» make player wait for elevator

« teleportation takes time

« require multiple hits per kill, even snipers can miss

« let bullet/missile have flying time

« build in inertia, don't allow sudden changes in facing

Consistency: Correctness

For consistency all user input must pass through the
Synch ronization module nitaization —— overail Game

Control

Game Session
Control

. @ e Render scene
Be careful with random »--© rorluﬂer
number generators: isolate | . copybutero
T isplay
the one used for game-state | @ o
d t f th »-- 9 Local Player
updating from other uses .
(ambient noise etc.) _ Local Input |
oo —— s,
- game Al
Design for multiplayer from the start (e
* single-player becomes a special «i
' Time sync,

case of single-client multiplayer game L, T

Reducing Consistency Check

Do area-of-interest management
. o
(a.k.a. relevance filtering): -
« aura: how far you can be sensed - g
(ninjas and cloaked ships have aura of 0) |

 nimbus: how far you can sense
(empath and quantum-sensor have large nimbus)

Perform consistency check only when B is within A's
nimbus and A is within B's aura

Aura and nimbus are defined for a given set of "game
technology” (e.g., cloaking device, quantum sensor, etc.)

Which Transport Protocol to Use?

Gaming requirements:

« late packets may not be useful anymore

« lost information can sometimes be interpolated
* (though loss statistics may still be useful)

Use UDP in game:

« can prioritize data

« can perform reliability if needed

e can filter out redundant data

» use soft-state

« send absolute values, not deltas

« orif deltas are used, send ""baseline" data periodically

« must do congestion control if sending large amount of data

