
5/3/16

1

Computer Networks

Lectures 32:
More TCP Congestion Control

Issues
How does TCP congestion control performs over
asymmetric links?

High speed and high bandwidth-delay product?
• to reach 10 Gbps requires packet loss rate of 1/90 minutes!

Short flows
• most flows are short
• most bytes are in long flows

How does TCP congestion control performs over
wireless links?
• packet reordering fools fast retransmit
• loss not a good indicator of congestion

Effect of Asymmetry on TCP
Example of asymmetric networks:
• cable modem: 10 Mbps down, 512 Kbps up
• ADSL: 8 Mbps down, 1 Mbps up
• etc.

Fine for web surfing, but transfer can be slowed
down by bandwidth asymmetry

Slower bandwidth on reverse path stretches out
ACKs (ACK dilation), resulting in slower throughput
on the forward path

Effect of Asymmetry on TCP
Maximum transmission speed determined by
“normalized bandwidth ratio”, the number of data
packets per ACK, given forward and return bandwidth

For example:
• 10 Mbps forward/100 Kbps reverse = bandwidth ratio of 100
• 1 KB data packet/40-byte ACK = data/ACK ratio of 25
• normalized bandwidth ratio = 100/25 = 4
⇒ if there are more than 1 ACK for every 4 packets, reverse

bottleneck link will be saturated before forward link
⇒ use delayed cumulative ACK to reduce number of ACKs

forward'bandwidth/datasize
reverse'bandwidth/ACKsize

5/3/16

2

TCP for High Speed Network

Multiple variants, we’ll look at (CU)BIC

Let:
µ: 10 Gbps
RTT: 100 ms
MTU: 1250 bytes
bandwidth×delay product (BDP): ~100,000 packets

For TCP in linear increase to grow cwnd from
50,000 packets takes about 50,000 RTTs or
5,000 secs (1.4 hours)

[Rhee]

TCP Link Utilization Simulation

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

Li
nk

 U
til

iz
at

io
n

Link Capacity (Mbps)

• µ: 155 Mbps (OC3), 622Mbps (OC12), 2.5Gbps (OC48),
5Gbps (OC96), 10Gbps (OC192, 10 GigE),
• 5 TCP connections, 100ms RTT, 1,000-byte packets

OC3

OC48
OC96

OC192
10GigE

OC12
.86

.83

.66
.58

.38

[Rhee]

BIC: Binary Increase Congestion Ctl
Upon loss:
Wmax = cwnd;

cwnd = Wmin = βWmax; // multiplicative decrease
while(Wmin <= Wmax){

inc = (Wmin+Wmax)/2 - cwnd;

if (inc > Smax)

inc = Smax; // additive increase
else if (inc < Smin)

inc = Smin;

// else logarithmic increase
cwnd = cwnd + inc;

if (no packet losses)

Wmin = cwnd;

else

break;

} every RTT;

[Rhee]

Wmax: max window
Wmin: min window
Smax: max increment
Smin: min increment

If no loss and cwnd ≥ Wmax, enter
“max probing” phase: exponential
increase, then additive increase

Wmax
Smax binary search

max probing

timesize

BIC Performance

[Rhee]

0

32

64

96

128

160

192

224

256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c
w
n
d

Time (RTT)

Linear Search

Binary Search with
Smax and Smin

Smax

Wmax

Wmin

available bandwidth

Smin

5/3/16

3

BIC to CUBIC
BIC adopted as the default TCP congestion control
module for Linux 2.6.8 (2004)

Undesirable characteristics of BIC:
• unfair to TCP under short-RTT or low-speed network
• different phases (linear increase, binary search, max

probing) and use of window clamping parameters (Smax,
Smin) complicated implementation and protocol analysis

CUBIC manages cwnd by a single growth function:
W(t) = C(t − K)3 + Wmax

where C is a constant, t is time elapsed since last

window reduction, and , 0 < β < 1
[Rhee]

K = βWmax

C
3

W(t) = C(t − K)3+ Wmax

cwnd +=[W(t+RTT)– cwnd]/cwnd

default Linux TCP congestion control since v. 2.6.18 (2006)
2.6.21 (2007): cubic root calculation reduced from 1,032 to 79 clocks
2.6.25-rc3 (2008): all window clamping variables removed

fast growth
upon loss

Wmax has moved,
fast probe for

more bandwidth

near Wmax,
cwnd lingers

max probing

steady state behavior

CUBIC Function

[Rhee]

Wmax

time

size

Effectiveness of Fast Retransmit
When does Fast Retransmit work best?
• long data transfers
• high likelihood of many packets in flight
• large window size
• high likelihood of many packets in flight
• low burstiness in packet losses
• higher likelihood that later packets cause dupACKs to be returned

Implications for Web traffic
•most Web transfers are short (e.g., 10 packets)
• short HTML files or small images
•often there aren’t that many packets in flight
• making fast retransmit less likely to “kick in”
• making you click “reload” more often… J

[Rexford]

TCP SACK
Selective ACK (SACK) gives sender a better idea of
which packets have been successfully delivered

TCP then does Selective Repeat instead of Go-Back-N

Added 2 TCP options:
1. SACK Permitted (option 4):

carried only by SYN packets
2. SACK Option (option 5) on

TCP data packets: NAK
missing segments, listed
in TCP option field

src port dst port

seq #

cumulative ack

1hl rwin

urgentchecksum

0 5 len

first

next

first

next

first

next

first

next

Usual TCP header

SACK Option

must be
most recently
received
fragment

5/3/16

4

TCP SACK Example
Pkts: 1 2 3 4 5 6 7 8 9 10 11 12 13

lost last to arrive

SACK for 13:

5

11

14

7

9

After 5, 6 arrive,
SACK for 6:

9

11

14

cumulative
ack

sack

TCP SACK Advantages

Decouples when and how much to send from which
to send

Potential uses of SACK info:
• send new packet on first or second duplicate ACKs
• tell sender when there will be no more returning ACK

• cancel previous decisions upon updated info

• construct a better count of outstanding segments

Deployed since Windows98, Linux 2.6, and also in Mac OS X

Rate Halving
Upon loss detection, instead of resuming transmission
only after half the expected number of ACKs have
returned, send one segment for every 2 segment ACKed
• pacing out packets reduces loss

•works with SACK to estimate
number of in-flight segments

• segment sent can be new or
retransmission based on SACK

• partial ACK doesn’t take TCP
out of fast retransmit phase

Proportional Rate Reduction (PRR)

PRR adopted as default TCP loss recovery mechanism
in Linux since v. 3.2 (2012)

Upon loss detection, instead of always halving the
sending rate while in recovery mode, reduce the rate
proportionally to the new cwnd (=ssthresh) size

5/3/16

5

Proportional Rate Reduction (PRR)
With Reno, the rate is simply halved:

Upon loss:
pipe = cwnd;
ssthresh = cwnd/2;

Upon every ACK or SACK:
// update delivered and outstanding
cwnd = outstanding + ceil(ssthresh/pipe

* delivered) – recovery_sent;

New packet sent out if cwnd > outstanding
// update recovery_sent

With CUBIC, new cwnd is roughly a third of old cwnd

Fairness Issues

How do flows with different RTTs share link?
• how would different RTTs affect fairness?

UDP

•multimedia apps often do not use TCP
• do not want rate throttled by congestion control

• instead use UDP:
• pump audio/video data at constant rate, tolerate packet losses

• TCP-friendly UDP?

Fairness Issues
Parallel TCP connections
• nothing prevents app from opening parallel

connections between 2 hosts
• web browsers do this already

• Example: link of rate R currently supporting 9 connections
• new app opens 1 TCP, gets R/10
• new app opens 11 TCPs, gets R/2 !

Problem: on the Internet, there’s no incentive to
play fair ⇒ Tragedy of the Commons

Perhaps transport protocol should just optimize for
minimal flow completion time

Multi-Path TCP (MP-TCP)

Allows for multiple connections (sub-flows) between
a sender and a receiver, presumably using different
IP paths

All the sub-flows share a single overall cwnd that
regulates their individual cwnd’s

Faster paths send more traffic than slower paths,
regulated by the overall cwnd

Supported by iOS 7 (Sept. 2013)

5/3/16

6

Quick UDP Internet Connections

Multiplexed stream transport over UDP

User-space reliable and secure stream transport
(targeted to SPDY or HTTP/2)

Isn’t SPDY enough?
SPDY streams multiplexed onto one TCP stream:
• one lost TCP segment holds up all SPDY streams
• one lost TCP segment causes bandwidth to shrink for all

SPDY streams
• slow connection establishment (TCP 1 RTT, TLS +1 RTT)

[Roskind]

QUIC over NAT?
Google servers can communicate with 91-94% of
users that initiates UDP-based sessions with Google

Most NAT port mapping stays bound for at least 30-
60 seconds

[Google]

QUIC Features

1. Always encrypted

2.Fast Open (0-RTT)

3. Connection migration

4.Congestion control

5. FEC (XOR-based, optional)

6.Multipath (future work)

0-RTT Connection Establishment
No cached information available:
• first CHLO (client hello) is inchoate (empty):

version and server name
• server responds with REJ, includes server

config (token), certs, etc.

Cached information available (0-RTT):
• complete CHLO: server token, connID, etc.
• followed by encrypted request data
• server responds with SHLO (server hello)
• followed by encrypted response data

~75% sessions are 0-RTT, contributes
• 50-80% of median latency improvement
• 50% of 95th-%tile improvement

[Iyengar]

0-RTT

5/3/16

7

Connection Migration

A 64-bit connection ID, instead of the usual 4-tuple,
identifies a connection

Connection ID chosen randomly by client

Enables connection mobility across IP, port

[Iyengar]

QUIC Congestion Control
Better signaling than TCP:
• each packet carries a monotonically

increasing packet number
• retransmitted packets also consume new sequence

numbers (no retransmission ambiguity)
• ACK packets consume sequence numbers

•more verbose ACK
• support 256 NAK ranges (vs. TCP’s 3 SACK ranges)

[Iyengar]

QUIC Congestion Control
Start with Linux’s TCP defaults:
• TCP CUBIC
• Loss recovery: fast retransmit and PRR

• TCP SACK
•Other improvements*:
• Forward ACK (FACK): sender uses SACK to estimate in-flight

segments
• Forward RTO Recovery (F-RTO): sender recognizes spurious RTO

caused by long delay
• Early retransmit with timer: retransmit after < 3 dupACKs if there

are < 3 in-flight packets
• Larger initial window (IW 10 to 50 packets)
• Tail Loss Probe (TLP): always sends 2 TLPs before the first RTO

[Swett]
* not required to know the details of these for this course

Tail Loss Probe
RTOs are expensive for short flows

TCP retransmission breakdown in two Google
datacenters

[Dukkipati]

5/3/16

8

Tail Loss Probe
Observations:
• tail segments are twice more

likely to be lost than earlier
segments
• losses are bursty

Tail Loss Probe:
• set probe timeout (PTO) to be

~2 RTTs since last ACK received

• arriving ACK resets PTO
• upon PTO, retransmit last

segment (or new one if available)

• FACK for retransmitted segment
could trigger fast recovery

[Dukkipati]

PTO

QUIC Deployment Timeline
Tested at scale, with millions of users
• Chrome Canary: June, 2013
• Chrome Stable: April, 2014
• ramped up for Google traffic in 2015

[Iyengar]

Performance on Google Properties

Faster page loading times
• 5% faster on average
• 1 second faster for web search at 99th-percentile

0-RTT connection establishment
• over 50% of the latency improvement (at median and

95th-percentile)

Improved YouTube Quality of Experience (QoE)
• 30% fewer rebuffers (video pauses)

Improved loss recovery
• over 10x fewer timeout based retransmissions improve

tail latency and YouTube video rebuffer rates

[Swett]

QUIC Loss Recovery

WebYouTube

[Swett]

5/3/16

9

Reno vs. CUBIC

QUIC defaults to CUBIC, similar to Linux

Latency across all services is extremely similar
between Reno and CUBIC

QoE is extremely similar between Reno and CUBIC

Retransmits are ~20% lower with Reno than CUBIC

Why not default to Reno?
“We’re thinking about it...”

[Swett]

1 vs. 2 Connection Emulation

QUIC defaults to 2-connection emulation

2-connection shows large improvements in
YouTube QoE

1- vs. 2-connection has a negligible effect on
median page load latency
• 2-connection shows slight improvement in tail latency

Retransmits are 20% higher with 2-connection

[Swett]

IW10 vs. IW32
QUIC defaults to 32, similar to HTTP/2 default

30% of QUIC’s "time to playback" gains for
YouTube due to IW32

IW10 had equal or slightly worse latency, even
at the 95%

IW10 decreased retransmit rate slightly
• IW10 without pacing had higher retransmit rate than

IW32 with pacing [IW considered harmful!]
(IW03, IW20, and IW50 also available)

[Swett]

Early Retransmit

QUIC defaults to FACK with a fixed dupack
threshold of 3

Time-based loss detection waits ¼RTT after the
first NACK for the packet to be lost

Shows no significant improvements vs FACK on
user-facing networks

[Swett]

5/3/16

10

Tail Loss Probe on QUIC

QUIC defaults to 2 TLPs before RTO

Disabling TLP has no effect on median latency

TLP improves 95% latency almost 1%
TLP improves YouTube rebuffer rate almost 1%
Disabling TLP reduces retransmits 5%

[Swett]

QUIC and BIC References
Iyengar, J., “QUIC Redefining Internet Transport,” IETF-93, July
2015
Swett, I., “QUIC Congestion Control and Loss Recovery,” IETF-
93, July 2015
Rochkind, J., “QUIC Multiplexed Stream Transport over UDP,”
IETF-88, Nov. 2013

Dukkipati, N., “Tail Loss Probe (TLP),” IETF-84, Aug. 2012
Rhee, I., “Congestion Control on High-Speed Networks,” IEEE
Infocom, 2004

[Swett]

