} O 1L§‘
ccq COMPUTER NETWORKS

Lectures 31:
TCP Congestion Control

Why is Congestion Bad?

Causes of congestion:
- packets arrive faster than a router can forward them
« routers queue packets that they cannot serve immediately

Why is congestion bad?
- if queue overflows, packets are dropped
« queued packets experience delay

packet transmitted (delayed)

=0k / 10 Mbps >
; packets queued (delay)

free buffer: arriving packets
dropped (lost) if buffer overflows

What is Congestion?

What gives rise to congestion?

Resource contention: offered load is

greater than system capacity
« too much data for the network to handle
» how is it different from flow control?

—>

Consequences of Congestion

If queueing delay > RTO, sender retransmits packets,
adding to congestion

Dropped packets also lead to more retransmissions

If unchecked, could result in congestion collapse
e increase in load results in a decrease in useful work done

When a packet is dropped, “upstream” capacity
already spent on the packet was wasted

Approaches to Congestion

Free for all

* many dropped (and retransmitted) packets
* can cause congestion collapse

* the long suffering wins

Paid-for service

* pre-arrange bandwidth allocations

* requires negotiation before sending packets
* requires a pricing and payment model

* don't drop packets of the high-bidders

* only those who can pay get good service

What is the Performance Objective?

System capacity: load vs. throughput:
- congestion avoidance: operate system at “knee” capacity
« congestion control: drive system to near “cliff” capacity

To avoid or prevent congestion,
sender must know system capacity Knee

' .
== 5 congestlon

and operate below it | collapse

CIliff

Throu-
ghput

How do senders discover system

capacity and control congestion?
« detect congestion .

. . esp-
« slow down transmission onse

time

i increase in load

d that resultsin a
/1 decreasein

A

+ useful work

1)

i done, increase

i inresponse

! .

{ time

Jainetal.

Dealing with Congestion

Dynamic adjustment (TCP)
* every sender infers the level of congestion
* each adapts its sending rate “for the greater good”

What is “the greater good” (performance objective)?
* maximizing goodput, even if some users suffer more?
* fairness? (what's fair?)

Constraints:
« decentralized control
« unlike routing, no local reaction at routers
(beyond buffering and dropping)
+ long feedback time
« dynamic network condition: connections come and go

Sender Behavior

How does sender detect congestion?
* explicit feedback from the network?
+ implicit feedback: inferred from network performance?

How should the sender adapt?
* explicit sending rate computed by the network?
* sender coordinates with receiver?
* sender reacts locally?

How fast should new
TCP senders send?

What does the sender see?
What can the sender change?

How Routers Handle Packets
Congestion happens at router links
Simple resource scheduling: FIFO queue and drop-tail

Queue scheduling: manages access to bandwidth
« first in first out: packets transmitted in the order they arrive

q [~

1 > —

Drop policy: manages access to buffer space
« drop tail: if queue is full, drop the incoming packet

\
X —

[Rexford]

What can Sender Do?

Upon detecting congestion (packet loss)
* decrease sending rate

But, what if congestion abated?

* suppose some connections ended transmission and
* there is more bandwidth available

* would be a shame to stay at a low sending rate

Upon not detecting congestion
* increase sending rate, a little at a time
* and see if packets are successfully delivered

Both good and bad
* pro: obviate the need for explicit feedback from network
* con: under-shooting and over-shooting cliff capacity

[Rexford]

How it Looks to the Sender
Packet delay ' :

* packet experiences high delay s |
Throu- |

Packet loss ghout

* packet gets dropped along the way

Load

How does TCP sender learn of these?
° delay:
- . Resp-
* round-trip time estimate (RTT) onse
. |OSS time
* retransmission timeout (RTO)
* duplicate acknowledgments

\ Load H Jain etal.

How do RTT and RTO translate to system capacity?
* how to detect “knee” capacity?
* how to know if system has “gone off the cliff"?

[Rexford]

Discovering System Capacity

What TCP sender does:

« probe for point right before cliff (“pipe size”)

« slow down transmission on detecting cliff (congestion)
« fast probing initially, up to a threshold ("slow start”)

« slower probing after threshold is reached (“linear increase”)

Why not start by sending

packet

alarge amount of data 7 fropped TCP Tahoe
= 12+ = »
and slow dowr\ only fo s)
upon congestion? g aqetod \ e
£ 5 / -t Thrashold
g 47 # (e
8 2+ /./_ L//
0 T T T I T T

T 1 T T T 1 1
01 2 3 45%6 7 8 9101112131415
Transrrission round

Self-Clocking TCP

TCP uses cumulative ACK for flow control and
retransmission and congestion control

TCP follows a so-called “Law of Packet Conservation”:
Do not inject a new packet into the network until a
resident departs (ACK received)

Since packet transmission is timed by receipt of ACK,
TCP is said to be self-clocking

201918171615 9

(bottleneck) 14 13

sender -— ~=— receiver

[Stevens]

TCP Slow-Start

When connection begins, increase rate
exponentially until first loss event:
+ double cwnd every RTT (or: increased by

1 for every returned ACK)

= really, fast start, but from a low base, vs. starting
with a whole receiver window’s worth of data as

! !
.. . . . t
TCP originally did, without congestion control %

" @]
- - 'acket Time:

“—RTT—
o
=1
D

o
D
Z
i}
3
2

time

R @ 0 Q 7
Jacobson and Karels

TCP Congestion Control

Sender maintains a congestion window (cwnd)
* to account for the maximum number of bytes in transit
* i.e., number of bytes still awaiting acknowledgments

Sender’s send window (wnd) is
wnd = MIN (rwnd, floor (cwnd))

» rwnd: receiver’s advertised window
- initially set cwnd to 1 MSS, never drop below 1 MSS

« increase cwnd if there’s no congestion (by how much?)
« exponential increase up to ssthresh (initially 64 KB)
« linear increase afterwards

« on congestion, decrease cwnd (by how much?)

* always struggling to find the right transmission rate,
just to the left of cliff

Increasing cwnd

Probing the “pipe-size” (system capacity) in two phases:
1. slow-start: exponential increase

One Round Trip Time

OR (:]
while (cwnd <= ssthresh) { One PacriTme

cwnd += 1
} for every returned ACK

OR: cwnd *= 2 for every cwnd-full of ACKs

2. congestion avoidance: linear increase

3R “ 2 4 .
while (cwnd > ssthresh) { %B

Cwnd += 1/flOOr (CWl’ld) Jacobson & Karels
} for every returned ACK

OR: cwnd += 1 for every cwnd-full of ACKs

TCP Slow Start Example

time 5 time 13 time 21

time 6 time 14 time 22,

time 24: s
sender —-
sender =—
ackS ack6 ack7
time25_ 9 s

sender —»
sender =—
*
09
sender —»-
sender =—
X7

tme27: m__ w5 s

time28: 2 1m0 9
sender —m —»- receiver
~—receiver

k8

tme29: 3w m__1
—» receiver sender —a- —» receiver

Sender —- — receivap
= receiver sender =— ~—receivor
ackS ack9 ack10 ackll

pipe full

Stevens

Goals of Congestion Control

3. Responsiveness: fast convergence,
quick adaptation to current
capacity

4. Smoothness: little oscillation
* larger change-step increases goal
responsiveness but decreases
smoothness
o Total
5. Distributed control: load on
no (explicit) coordination :he .
networ
between nodes v

'/' Responsiveness
|

)

L J___X__/__ Smoothness
v

Time Chiu & Jain

Guideline for congestion control (as in routing):
be skeptical of good news, react fast to bad news

sender —a- —» receiver

Dealing with Congestion

Once congestion is detected,

« how should the sender reduce its transmission rate?

+ how does the sender recover from congestion?

Goals of congestion control:

1. Efficiency: resources are fully utilized

2. Fairness: if kK TCP connections share
the same bottleneck link of
bandwidth R, each connection
should get an average rate of R/k

i\(T(J TCP connection 1
S

bottleneck
router

@ capacity R

TCP connection 2

Adapting to Congestion

By how much should cwnd (w) be changed?
Limiting ourselves to only linear adjustments:
* increase when there’s no congestion: w’ = bw +a;
* decrease upon congestion: w’ = b w +a,

Alternatives for the coefficients:

1. Additive increase, additive decrease:

a,>0,a,<0,b,=b,=1

2. Additive increase, multiplicative decrease:

a,>0,b=1,a,=0,0<bh,<1

3. Multiplicative increase, additive decrease:

a;=0,b>1,a,<0,b,=1

4. Multiplicative increase, multiplicative decrease:

b;>1,0<b,<1,a,=a,;=0

Resource Allocation

View resource allocation as a trajectory through an
n-dimensional vector space, one dimension per user

A 2-user allocation trajectory:

* X;, X,: the two users’ allocations UserR
. . . _ _ 2’s
. Efﬁoency Line:x; ¥, =% =R 0
+ below this line, system is under-loaded ation
« above, overloaded x3

* Fairness Line: x; = x,
* Optimal Point: efficient and fair

* Goal of congestion control:
to operate at optimal point

AIMD

/

Equi-
Ffumess Fairness
Line Line
’
7/
, /
7 Overload
4
X0
P Optimal point
7/
7/

P fficiency Line
,Underload

User 1I’s Allocation x; R
Chiu & Jain

It can be shown that only AIMD

takes system near optimal point

Additive Increase,
Multiplicative Decrease:
system converges to an
equilibrium near the
Optimal Point

R Fairness R
\ Line

Efficiency Line ’

Additive Increase,
Additive Decrease:
system converges to
efficiency, but not to
fairness

The operating
point keeps
oscillating along .
this line l“:ilrness
Line

Efficiency Line

User 1's Allocation x; R Chiu & Jain

User I’s Allocation x; R Chiu & Jain

Additive/Multiplicative Factors

Additive factor: adding the same amount to both
users’ allocation moves an allocation along a 45° line

Multiplicative factor:

multiplying both users’ e X
allocation by the same factor i

moves an allocation on a line —ation |
through the origin (the i
“equi-fairness,” or rather,
“equi-unfairness” line)

Equi-
Fairness Fairness
Line Line
’
7/
, /
2 Overload
4
X0 4
P 4 Optimal point
7/

P fficiency Line
,Underload

* the slope of this line, not any
position on it, determines fairness

User 1I’s Allocation x; R
Chiu & Jain

TCP Congestion Recovery

Once congestion is detected,

+ by how much should sender decrease cwnd?
« how does sender recover from congestion?

« which packet(s) to retransmit?
+ how to increase cwnd again?

First, reduce the exponential increase

threshold ssthresh =cwnd/2

Tip-]
TCP Tahoe: i

« retransmit using Go-Back-N £
* reset cwnd=1 g
- restart slow-start g-%

T T T T T I T T T T T T 1
345 6 7 8 9101112131415
Transrrission round

Fast Retransmit

Motivation: waiting for RTO is too slow

TCP Tahoe also does fast retransmit:

* with cumulative ACK, receipt of packets following a lost
packet causes duplicate ACKs to be returned
* interpret 3 duplicate ACKs as an implicit NAK

* retransmit upon receiving 3 dupACKs, i.e., on receipt of the
4th ACK with the same seq#, retransmit segment

* why 3 dupACKs? why not 2 or 4?

With fast retransmit, TCP can retransmit after 1 RTT
instead of waiting for RTO

TCP Tahoe Recovers Slowly

cwnd re-opening and retransmission of lost packets
regulated by returning ACKs
« duplicate ACK doesn’t grow cwnd, so TCP Tahoe must wait

at least 1 RTT for fast retransmitted packet to cause a non
duplicated ACK to be returned

- if RTT is large, Tahoe re-grows
660
cwnd very slowly
640
620 /
wof e Fast retransmit
....... after three duplicate ACK's
sso e #‘O
H_ﬂ,,,f’ <— I RTT ——
560 -~

53 5.4 5.5

[Hoe]

Fast Retransmit Example

segment number

660

620

.
.....) rwnd
oot Fast retransmit
.t *
.t ¢

after three duplicate ACK’s

.....,..
580 1° .
sent segments -
sender’s 3 dupACKs retransmit on
wnd 560 4th dupACK

ACKed seq#

53 5.4 5.5
time (secs)

[Hoe]

TCP Reno and Fast Recovery

TCP Reno does fast recovery:

* current value of cwnd is the estimated system
(pipe) capacity

* after congestion is detected, want to continue
transmitting at half the estimated capacity
How?

* each returning ACK signals that an outstanding
packet has left the network

* don't send any new packet until half of the
expected number of ACKs have returned

Fast Recovery

1.

on congestion, lost
segment, set ssthresh=cwnd/2
. remember highest seq# sent,
snd_high; and remember
current cwnd, let’s call it pipe

. decrease cwnd by half

4. increment cwnd for every

returning dupACK, incl. the 3
used for fast retransmit

. send new packets (above

snd_high)onlywhen
cwnd > pipe

. exit fast-recovery when a
non-dup ACK is received

. set cwnd=ssthresh+1

and resume linear increase

segment number

cwnd/2

10000

sshthresh+1l
sshthresh+:

53 54 55

cwnd: number of bytes unACKed

6
time (secs)

[Hoe]

TCP Congestion Control Examples

TCP keeps track of outstanding bytes by two variables:
1. snd_una:lowest unACKed seq#,

i.e.,, snd_una records the seq# associated with the last ACK
2.snd next:seq# to be sent next

Amount of outstanding bytes:

pipe=snd next -snd una

Scenario:
* 1 byte/pkt

* receiver R takes 1 transmit time to return an ACK
* sender § sends out the next packet immediately upon

receiving an ACK
* rwnd = o0

* cwnd = 21, in linear increase mode

* pipe =21

Summary: TCP Congestion Control

* When cwnd is below ssthresh, sender in slow-
start phase, window grows exponentially

* When cwnd is above ssthresh, senderisin
congestion-avoidance phase, window grows linearly

* When a 3 dupACKs received, ssthresh setto
cwnd/2 and cwnd settonew ssthresh

* If more dupACKs return, do fast recovery

* Else when RTO occurs, set ssthreshto cwnd/2
and set cwnd to 1 MSS

Factors in TCP Performance

RTT estimate

« RTO computation

sender’s sliding window (wnd)

* receiver’'s window (rwnd)

« congestion window (cwnd)
slow-start threshold (ssthresh)
fast retransmit

- fast recovery

TCP Variants

Original TCP:
* loss recovery depends on RTO

TCP Tahoe:

* slow-start and linear increase

* interprets 3 dupACKs as loss signal,
but restart sslow-start after fast retransmit

TCP Reno:

* fast recovery, i.e., consumes half returning dupACKs
before transmitting one new packet for each
additional returning dupACKs

* on receiving a non-dupACK, resumes linear-increase
from half of old cwnd value

Summary of TCP Variants

TCP New Reno:

* implements fast retransmit phase whereby a partial ACK, a
non-dupACK thatis < snd_high (seq# sent before
detection of loss), doesn‘t take TCP out of fast recovery,
instead retransmits the next lost segment

* only non-dupACK thatis > snd_high takes TCP out of fast

recovery: resets cwnd to ssthresh+1 and resumes linear
increase

