
Computer Networks

Lecture	30:	
Flow	Control,	Reliable	Delivery	

TCP	Flow	Control	

The	receiver	side	of	a	TCP	connection	maintains	a	
receiver	buffer:	
	
	

	
	

	
	
	

application	process	may	be	slow	at	reading	from	
the	buffer	

Flow	control	ensures	that	sender	won’t	overflow	
receiver’s	buffer	by	transmitting	too	much,	too	fast	

Sliding	Window	
TCP	uses	sliding	window	flow	control:	allows	a	larger	
amount	of	data	“in	flight”	than	has	been	acknowledged	
• allows	sender	to	get	ahead	of	the	receiver	
• but	not	too	far	ahead	

Sending	process	 Receiving	process	

Next	byte	ACKed	
(snd_una)	

Next	byte	sent	
(snd_next)	

TCP	 TCP	

Next	byte	expected	

Last	byte	written	 Last	byte	read	

Last	byte	received	

[Rexford]	

TCP	Receiver	Window	
Receiver	window	size	(rwnd)	
• amount	that	can	be	sent	without	acknowledgment	
• receiver	can	buffer	this	amount	of	data	

Receiver	continually	advertises	buffer	space	available	
to	sender	by	including	the	current	value	of	rwnd	in	
TCP	header	

Sender	limits	unACKed	data	to	rwnd
⇒ guarantees	receiver	buffer	wouldn’t	overflow	

Window	Size	

Outstanding	
Un-ack’d	data	

Data	OK		
to	send	

Data	not	OK		
to	send	yet	

Data	ACK’d		
	

[Rexford]	

TCP	Header	with	rwnd

Data	

Flags:	 SYN	
FIN	
RST	
PSH	
URG	
ACK	

[Rexford]	

S’s	port	 D’s	port	

Sequence	Number	

Acknowledgment	Seq#	

window	size	20 0

Checksum	 Urgent	pointer	

Options	(variable)	

F	S	R	P	A	U	

TCP	Flow	Control	Problems	
Two	flow-control	problems:	
1.  receiver	too	slow	(silly-window	syndrome)	

2.  sender’s	data	comes	in	small	amount	(Nagle’s	algorithm)	
	

Silly-window	syndrome:	
receiver	window	opens	only	by		
a	small	amount,	hence	sender		
can	send	only	a	small	amount		
of	data	at	a	time	

	
Why	is	this	not	good?	
1.  packet	header	overhead	
2.  small	packets	cause	more	
interrupts	at	busy	receiver	

Sender
S

Destination
D

w = 2500

0 (size 1000)

2000 (500)

2500 (1)

application reads
out 1 byte

w = 1

application reads
out 1 byte

w = 1

2501 (1)

1000 (1000)

Host S Host D

Solution	to	Silly-window	Syndrome	

Don’t	advertise	window	until	it	opens	“significantly”	
(>	½*MSS	or	½*rwnd)	
	

Implementation	alternatives:	
• ACK	with	rwnd=0:		
sender	probes	after		
persistence	timer	goes	off	

• delayed	ACK,	but	
•  delayed	not	more	than	500	ms	

•  or	ACK	every	other	segment	

(Why?)	

Sender
S

Destination
D

w = 2500

0 (1000)

1000 (1000)

2000 (500)

probe 2499 (1)

application reads
out 1 byte

w = 0

w = 2000

persist
timer

Host S Host D

Characteristics	of	
Interactive	Applications	

User	sends	only	a	small	amount	of	data,	e.g.,	instant	
messaging,	sends	one	character	at	a	time	

	

Problem:	40-byte	header	for	every	byte	sent!	
	

Solution:	“clumping,”	sender	clumps	data	together,	
i.e.,	sender	waits	for	a	“reasonable”	amount	of	time	
before	sending	
	

How	long	is	“reasonable”?	

Nagle	Algorithm	

•  send	first	segment	immediately	
•  accumulate	data	until	ACK	returns,	or	

•  up	to	½	sender	window	or	½	MSS	

	

Advantages:	
•  bulk	transfer	is	not	held	up	
•  data	sent	as	fast	as	network	can	deliver	
(see	next	slide)	

	
Can	be	disabled	by	setsockopt(TCP_NODELAY)

Nagle	Algorithm	

Sender
S

Receiver
R

round-trip
time (rtt)

ACKs

pkts
1
2
3

w 1
2
3

w

.

.

.
.
.
.

.

.

.

.

.

.

w+1
bytes

in 2rtts

Sender
S

Receiver
R

round-trip
time (rtt)

1

2 to w+1

1

w+1
bytes

in 2rtts

2 to w+1

accumulated	
data	sent	in	1	pkt	

Host S Host D Host S Host D

Nagle	sends	data	as	fast	as	network	can	deliver:	

	without	Nagle 	with	Nagle	

TCP	Error	Recovery	

Sender:	
• maintains	only	one	active	timer,	for	snd_una,	restarting	the	
timer	after	retransmission	

	

Receiver:	
• cumulative	ACKs	all	packets	received	in-order	

• out-of-order	packets	repeat	the	last	ACK	
• buffers	out-of-order	packets	
• error	recovery	on	TCP	is	actually	more	complicated	because	
it’s	tied	up	with	congestion	control,	but	it	still	relies	on	
retransmission	timeout	for	correctness	

TCP	Go-back-N	with	Buffering	
Receiver:	
•  buffers	out-of-order	packets	
•  cumulative	ACKs	all	packets	received	in-order	

For	illustration	only!		
Actual	error	recovery	
tied	up	with	
congestion	control	

Retransmission	Timeout	
ARQ	depends	on	retransmission	to	achieve	reliability:	
sender	sets	a	timeout	waiting	for	an	ACK	

Retransmission	timeout	(RTO)	
computed	from	round-trip	time	(RTT)	
• expects	ACK	to	arrive	after	an	RTT	
• but	on	the	Internet,	RTT	of	a	path	
varies	over	time,	due	to:	
•  	route	changes	
•  	congestion	

Varying	RTT	complicates	the		
computation	of:	
1.  retransmission	timeout	(RTO)	

2.  optimal	sender’s	window	size	

Sender
S

Receiver
R

2!

round-trip
time (rtt)

ACKs

Pkts
1
2
3
4

1
2
3
4

retransmission
timeout (rto)

Implications	of	Bad	RTO	
RTO	too	small:	
unnecessary	
retransmissions:	
Sender

S

Destination
D

Router
R

rtt

rtt

rto

1

A1

2

2
A2

Sender
S

Destination
D

Router
R

rtt

rtt

rto

1

A1

2

2

X

RTO	too	big:	
lower	throughput:	

Estimating	RTT	
RTO	must	adapt	to	actual	and	current	RTT	

Estimate	the	RTT	by	watching	returning	ACKs	

• compute	a	smoothed	estimate	by	keeping	a	running	average	of	
the	RTTs	(a.k.a.	Exponentially	Weighted	Moving	Average	(EWMA))	

• estimated_RTT’	= α	*	estimated_RTT	+	(1	–α)	*	sample_RTT	
where	

•  sample_RTT:	time	between	when	a	segment	is	transmitted	and	
when	its	ACK	is	received	

• α	is	the	weight:	
•  α ￫1:	each	sample	changes	the	estimate	only	a	little	bit	
•  α ￫	0:	each	sample	influences	the	estimate	heavily	
•  α	is	typically	�	(1 – ½3,	which	allows	for	fast	implementation	(3	right	shifts))	

Example	RTT	Estimation	

How	to	Compute	RTO?	

First	try:	RTO	=	β	RTT,	with	β typically	set	to	2	or	3
Two	problems:	

1.  an	ACK	acknowledges	receipt	
of	data,	is	not	an	ACK	for	
transmission:	which	packet	
to	associate	with	an	ACK	in	
the	case	of	retransmission?	

2.  RTTs	spread		
too	wide	

Sender
S

Destination
D

rto

rtt?

pkt i

pkt i

ack i

pdf

rtt
samples

rtt
mean

rto =
2 rtt

pkts with these
rtt must be
rexmitted

ACK	Ambiguity	
Which	retransmitted	packet	to	associate	with	an	ACK?	
1.  original	packet:		

RTO	can	grow	unbounded	
2.  retransmitted	packet:	

RTO	shrinks	

	

There	is	a	feedback	loop	
between	RTO	computation	
and	RTT	estimate	

Sender
S

Destination
D

rto

rtt

rto

rtt

rto

0

0

1

1

2

Sender
S

Destination
D

rto

rtt

X

X
rto

X

rtt

rto

0

0

1

1

2

ACK	Ambiguity:	Karn’s	Algorithm	

Karn’s	algorithm:	
•  adjust	RTT	estimate	only	from	non-retransmitted	samples	

•  however,	ignoring	retransmissions	could	lead	to	
insensitivity	to	long	delays	

•  so,	back	off	RTO	upon	retransmission:		
RTOnew=	γ RTOold,	γ typically	=	2

RTT	Spread	Too	Wide	
RTT	estimate	computed	using	EWMA	only	considers	
the	mean,	doesn’t	take	variance	into	account	
	
	
	
	
	
Jacobson’s	algorithm:	
•  estimate	deviation	(D)	of	sample_RTT	
•  Dnew=	α	Dold	+ (1�α) |sample_RTT	–	estimated_RTT|
•  compute	new	estimated_RTT	as	usual	
•  take	the	deviation	in	sample_RTT	(D)	into	account	when	
computing	RTO	
•  RTO	=	estimated_RTT	+	4D

pdf

rtt
samples

rtt
mean

rto =
2 rtt

pkts with these
rtt must be
rexmitted

Timers	Used	in	TCP	

1. TIME_WAIT:	2*MSL	
2. persistence	timer	
3.  RTO	
4. keep-alive	timer:	probe	the	other	side	if	
connection	has	been	idle	for	“too	long”	
• may	be	turned	on/off	

•  idle	period	may	be	set	using	setsockopt()

