
Computer Networks

Lecture	29:	
TCP	Connection	Establishment	

Internet	Protocol	Stack	

application:	supporting	network	applications	
•  HTTP,	SMTP,	FTP,	etc.	

transport:	endhost-endhost	data	transfer	
•  TCP,	UDP	

network:	routing	of	datagrams	from	source	to	
destination	
•  IP,	routing	protocols	

link:	data	transfer	between	neighboring		
network	elements	
•  Ethernet,	WiFi	

physical:	bits	“on	the	wire”	

application

transport

network

link

physical

Transport	Protocols	
Provide	logical	communication	
between	application	processes	
running	on	different	hosts	

Run	on	end	hosts		
• sender:	breaks	each	application	
message	into	segments,	and	passes	
them	onto	the	network	layer	

• receiver:	reassembles	segments	
into	messages,	passes	them	to	the	
application	layer	

Multiple	transport	protocols	are	
available	to	applications	

Internet	Transport	Protocols	
Reliable,	in-order	delivery	(TCP)	
• connection	setup	
• flow	control	
• congestion	control	
	
Unreliable,	unordered	
delivery	(UDP)	
• no-frills	extension	of	best-effort	IP	
	
Services	not	available	
• delay	guarantees	
• bandwidth	guarantees	

Why	Would	Anyone	Use	UDP?	

Lightweight	communication	between	processes:	
• faster	than	TCP,	no	connection	establishment/tear-down	
stages	(1	vs.	2.5	rtts)	
•  simply	send	messages	to	and	receive	them	from	a	socket	

• no	connection	state	at	server	and	client	
•  avoid	overhead	and	delays	of	ordered,	reliable	delivery	
•  no	allocation	of	buffers,	parameters,	sequence	#s,	etc.	
• making	it	easier	to	handle	many	active	clients	at	once	

Lightweight	communication	between	processes:	
• small	segment	header	
•  UDP	header	is	only	eight-bytes	long	
• fine	control	over	what	data	is	sent	and	when	

•  as	soon	as	an	application	process	writes	into	the	socket	
•  UDP	packages	the	data	and	sends	the	packet	
• no	congestion	control	
• UDP	can	blast	away	as	fast	as	the	network	can	handle	

• broadcast	&	multicast	can	only	use	UDP	(Why?)	

Why	Would	Anyone	Use	UDP?	

Popular	Applications	That	Use	UDP	
Simple	query	protocols	like	DNS	
• overhead	of	connection	establishment	is	overkill	
• easier	to	have	the	application	retransmit	if	necessary	

	
	
Multimedia	streaming	
•  loss	tolerant,	rate	sensitive	

•  by	the	time	a	lost	packet	is	retransmitted,	it’s	too	late	
•  congestion	control	introduces	too	much	jitter	
•  e.g.,	calls,	video	streaming,	gaming	
	

Reliable	UDP:	add	reliability	at	application	layer	
•  application-specific	error	recovery!	

�www.umich.edu?�

�141.211.243.44�

Connection	oriented	
• explicit	set-up	and	tear-down	of	TCP	session	

Stream-of-bytes	service	
• sends	and	receives	a	stream	of	bytes,	not	discrete	messages	

Flow	control	
•  prevent	overflow	of	the	receiver’s	buffer	space	

Reliable	delivery	
•  retransmission	of	lost	packets	

Congestion	control	
• adapt	to	network	congestion	for	the	greater	good	

Does	not	provide	timing	guarantee	nor	minimum	
bandwidth	guarantee	

TCP:	Transmission	Control	Protocol				

TCP	“Stream	of	Bytes”	Service	

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host	A	

Host	B	

B
yte 80

B
yte 80

[Rexford]	

Emulated	Using	TCP	“Segments”	

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host	A	

Host	B	

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment	sent	when:	
1.  segment	full	(Max	Segment	Size),	
2.  not	full,	but	times	out	waiting	for	

more	data	from	app,	or	
3.  “pushed”	by	application	

[Rexford]	

TCP:	Transmission	Control	Protocol				
Provides	reliability	on	datagram	network	
What	does	reliable	delivery	entail?	
• 		
• 		
• 		
• 		
	
Link	layer	already	provides	reliable	delivery	
Why	do	we	need	provide	it	again	at	the	transport	layer?	
• 		
• 		

Need	for	E2E	Reliability	

1 0 1

1 0 1 1 1 1

1 1 1

2

1

5

3
4

6
7

1

2

3

5

4

7

pkt	3	corrupted	
or	dropped	

E2E	Reliability	
Lack	of	reliable	delivery	due	to:	
•  re-routed	packets	
•  bit	error	
•  dropped/lost	packets	(due	to	congestion)	
•  system	reboots	
	
What	are	some	of	the	tools	available	to	us	to	achieve	
reliability	at	the	transport	layer,	given	unreliable	
network	layer?	
•  		
•  		
•  		
•  		

Sequence	Number	
What	are	the	uses	of	sequence	number	in	providing	
reliability?	
• 		
• 		
• 		

TCP’s	Cumulative	ACK	
ACKs	the	last	byte	received	in-order	
Tells	sender	the	next-expected	seq#	
If	bytes	0	to	n	have	been	received,	ACK	says	n+1
subsequent	out-of-order	packets	generate	the	same	
cumulative	ACK:	

	
Advantage:	lost	ACK	can	be	“covered”	by	later	ACKs	
Disadvantage:	size	of	gap	between	two	packets	not	
known	to	sender	

TCP	Cumulative	ACK	

16

Host	A	

Host	B	

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence	number	
=	1st	byte	

ACK	sequence	
number	=	next	
expected	byte	

Connection	Establishment	

TCP	SYNchronization	packet	to	establish	a	connection	
carries	the	Initial	Sequence	Number	(ISN)	

First	try:	
	
	
	
	
	
	
	
Lesson:	connection	request	must	be	ACKed	

Sender
S

Destination
D

SYN ISN=X
reboot

SYN ISN=Z

Expected Seq#
ESN = X+1,
ESTABLISHED

discard
Z+1

Z+2
dropped,
but connection
with ESN = X+1
remains
ESTABLISHED

Host S Host D

Connection	Establishment	

Second	try:	
	
	
	
	
	
	
	
	
	
	
Lesson:	connection	ACK	must	be	ACKed	or	rejected	

Sender
S

Destination
D

stray SYN ISN=X

SYN ISN=Y ACK X+1

ESN = X+1

ESTABLISHED

discard

Y+1

(piggy-backed ACK)

Host S Host D

TCP	Connection	Establishment	
Three-way	handshake:	
	
	
	
	
	
	
	
	
	
	
SYN	uses	a	seq#	

Sender
S

Destination
D

SYN ISN=X

SYN ISN=Y
ACK X+1

X+1

ESN = Y+1
ESTABLISHED

ESN = X+1
ESTABLISHED

ACK Y+1

Host D Host S

Three-Way	Handshake	

How	three-way	handshake	solves	the	original	problems:	
	
	
	
	
	
	
	
	
What	if	the	SYN	packet	is	lost?	
• since	there’s	no	good	way	to	gauge	RTT	
• some	TCP	sender	times	out	after	3-6	seconds	

Sender
S

Destination
D

SYN ISN=X

reboot

SYN ISN=Z

SYN ISN=Y
ACK X+1

RST Z
RST Y

Sender
S

Destination
D

stray SYN ISN=X

SYN ISN=Y ACK X+1

ESN = X+1

ESTABLISHED

discard

RST Y

Host S Host D Host S Host D

TCP	Segment	

IP	packet	
• no	bigger	than	Maximum	Transmission	Unit	(MTU)	
• e.g.,	up	to	1500	bytes	on	an	Ethernet	

TCP	packet	
•  IP	packet	with	a	TCP	header	and	data	inside	
• TCP	header	is	typically	20	bytes	long	

TCP	segment	
• no	more	than	Maximum	Segment	Size	(MSS)	bytes	
• e.g.,	up	to	1460	consecutive	bytes	from	the	stream	
•  (note:	PA3’s	MSS	includes	IP	header)	

IP Hdr TCP Hdr TCP Data (segment)

MSS
MTU

[Rexford]	

TCP	Header	

src	port	#	 dst	port	#	

32	bits	

application	
data		

(variable	length)	

sequence	number	

acknowledgement	sequence#	

window	size	

urg	data	pointer	checksum	

F	S	R	P	A	U	
head	
len	

not	
used	

options	(variable	length)	URG:	urgent	data	
pointer	is	valid/used		

(seldom	used)	

ACK:	ACK#	valid	
(ACK	piggy-backed)	

PSH:	push	data	now	
(fflush()called)	

RST,	SYN,	FIN:	
connection	establishment	

(setup,	teardown)	

Internet	checksum	
same	as	UDP	

receiver	window	
size	(rwnd,	in	bytes)	

counting	
by	bytes		
of	data	
(not	segments!)	

end	of	urgent	
data,	e.g.,	^C	

number	of	
32-bit	fields	

in	header	

Maximum	Segment	Size	
negotiation,	default		
(minimum	required)		
536	bytes	of	data	

TCP	Header	Fields	
Sequence	number:	
•  sequence	numbers	count	bytes	sent	
•  seq#	of	a	packet	is	the	seq#	of	the	first	byte	it	carries	

Acknowledgement	sequence	number:	
allows	for	piggy-backed	ACK	
• TCP	traffic	is	often	bidirectional	
•  both	data	and	ACKs	travel	in	both	directions	
• ACK	packets	have	high	overhead	
•  40	bytes	for	the	TCP/IP	headers,	carrying	no	data	
• piggy-backing	allows	a	host	D	to	send	its	ACK	to	host	S	
along	with	its	data	for	host	S	
• delayed	ACK:	TCP	allows	the	receiver	to	delay	sending	of	
ACKs	to	increase	chances	of	piggy-backing	and	to	reduce	
number	of	ACKs	(since	they’re	cumulative)	

Step	1:	S’s	Initial	SYN	Packet	

S’s	port	 D’s	port	

S’s	ISN	

Acknowledgment	Seq#	

window	size	5 0

Checksum	 Urgent	pointer	

Options	(variable)	

Flags:	 SYN	
FIN	
RST	
PSH	
URG	
ACK	

Host	S	tells	Host	D	it	wants	to	open	a	connection…	

F	S	R	P	A	U	

[Rexford]	

Step	2:	D’s	SYNACK	Packet	

D’s	ISN	

S’s	ISN	plus	1

Options	(variable)	

Flags:	 SYN	
FIN	
RST	
PSH	
URG	
ACK	

Host	D	tells	Host	S	it	accepts,	and	is	ready	to	hear	the	next	byte…	

Upon	receiving	Host	D’s	SYNACK	packet,	Host	S	can	start	sending	data	

F	S	R	P	A	U	

[Rexford]	

D’s	port	 S’s	port	

window	size	

Checksum	 Urgent	pointer	

5 0

Upon	receiving	Host	S’s	packet,	Host	D	can	start	sending	data	

Step	3:	S’s	ACK	of	the	SYNACK	

D’s	ISN	plus	1

Options	(variable)	

Flags:	 SYN	
FIN	
RST	
PSH	
URG	
ACK	

Host	S	tells	Host	D	it	is	okay	to	start	sending	

Sequence	number	

F	S	R	P	A	U	

[Rexford]	

S’s	port	 D’s	port	

window	size	

Checksum	 Urgent	pointer	

5 0

Connection	Tear-down	
When	to	release	a	connection?	
How	do	you	know	the	other	side	is	done	sending	
and	all	sent	packets	have	arrived?	
	
Use	3-way	handshake	to	tear-down	connection:	
	
	
	
	
	
	
FIN	also	uses	a	seq#	

Sender
S

Destination
D

FIN X

ACK X+1 FIN Y

ACK Y+1

Host S Host D

Connection	Tear-down	

If	the	other	side	still	has	data	to	send:	
	
	
	
	
	
	
	
	
	
	
Why	not	delay	ACK X+1	until	FIN Y?	

Sender
S

Destination
D

FIN X

ACK X+1

ACK Y+1

FIN Y

More data
packets
from D

Host S Host D

Connection	Tear-down	

Still	depends	on	timeout	for	correctness:	

Sender
S

Destination
D

FIN X

ACK X+1 FIN Y

ACK Y+1

X

rto

FIN X

ACK X+1 FIN Y

Sender
S

Destination
D

FIN X

ACK X+1 FIN Y

ACK Y+1
X

rto

times out and
tears down connection
unilaterally

Host S Host D Host S Host D

Connection	Tear-down	
Still	depends	on	timeout	for	correctness:	
	
	
	
	
	
	
	
	
	
	
TCP	connection	tear-down	depends	on	timers	for	correctness,	
but	uses	3-way	handshake	for	performance	improvement	

Sender
S

Destination
D

FIN X

ACK X+1 FIN Y

FIN X

X
rto

times out and
tears down
connection
unilaterally

X

FIN X

rto

rto

ACK X+1 FIN Y

X

after n attempts
tears down
connection

unilaterally

Host S Host D

Socket	Connection	Queues	

Stevens TCP/IP Illustrated v. 2 pp. 441, 461

sd

td

TCP	Connection	Establishment	Demo	

% ifconfig –a
% sudo tcpdump –i en0 –S host web.eecs.umich.edu

TCP	Connection	Management	FSM	

TCP	client	
lifecycle	

TCP	server	
lifecycle	

Put	together	.	.	.	

Finite	Sequence	Number	Space	
Issues	arising	from	having	finite	sequence	number	
space:	
1.  choice	of	sequence	space	size	
2.  sequence	number	wrap	around	
3.  initial	sequence	number	(ISN)	choice	

Sequence	Number	Space	Size	
If	we	had	only	2	bits	to	keep	track	of	sequence	numbers:	
	
	
	
	
	
Let:	
A:	time	taken	by	receiver	to	ACK	packet	
T:	time	sender	continues	retransmitting	

if	an	ACK	is	not	received	

Maximum	Segment	Lifetime	(MSL):	2MPL + T + A

2 1 123 00S D

new? or rexmit?

T

MPL: Max. Pkt. Lifetime

A

MPL

Duplicated	Sequence	Number	
Maximum	Segment	Lifetime	(MSL):	2MPL + T + A
	
Want:	no	sequence	number	may	be	duplicated	
within	an	MSL	
	
What	would	cause	a	sequence	number	to	be	
duplicated	within	an	MSL?	
• sequence	number	wraps	around	(within	a	single	
connection)	
• sequence	number	re-used	(across	connections)	

Sequence	Number	Wrap	Around	
Sequence	space	(N)	is	finite	and	sequence	number	can	
wrap	around:	
	
	
	
	
	
	
Assuming	s1	and	s2	are	not	more	than	N/2	apart,	
s1 > s2	if	either:	
1.  |s1 – s2| < N/2	and	s1 > s2,	or	
2.  |s1 – s2| > N/2	and	s1 < s2

0

3

1

2

0

which is
newer?

pkt 3 queued/
delayed

S2 S1

0 N

0 N

S1 S2

Required	Sequence	Number	Size	
To	prevent	duplicate	sequence	number:	for	s1 > s2,	s1	
and	s2	cannot	be	more	than	N/2 apart	(|s1 – s2| < N/2)	
within	an	MSL	

For	TCP,	N = 232–1,	N/2	maximum	separation	
requirement	means	that	only	n = 31	bits	are	usable	

Let	µ	be	the	transmission	bandwidth,	worst	case,	
assuming	sender	can	“fill	the	pipe”,	want:	
µ < (N/2)/MSL	or,	2n > µ*MSL	
• example:	SF-NY	MPL	is	25	msec.	
let	MSL = 2	min,	for	n = 31	bits,	
µ	must	be	<	17.8	MB/s	(143	Mbps)	

Required	Sequence	Number	Size	
But	TCP	transmission	is	constrained	by	the	receiver’s	
advertised	window	(rwnd),	which	is	of	16-bit	size	

Only	64	KB	can	be	outstanding	at	any	one	time,	which	
takes	less	than	⅓	of	a	second	to	clear	the	network	even	
at	“slow”	T1	speed	(1.5	Mbps)	

So	we	don’t	have	to	worry	about	sequence	number	re-
use	due	to	wrap	around	

Initial	Sequence	Number	(ISN)	
Sequence	number	for	the	very	first	byte	
	
Why	not	always	start	with	an	ISN	of	0?	
	
IP	addresses	and	port	#s	uniquely	identify	a	
connection,	but	port	numbers	get	reused	when:	
• 		
•  		
and	connections	get	“reincarnated”	
	
We	want	ISNs	that	will	not	let	packets	from	an	old	
connection	that	are	still	in	flight	to	be	mistaken	for	
packets	from	the	new	connection	

ISN	from	System	Clock	
Assume	clock	keeps	ticking	even	when	machine	is	down	
Want:	no	seq.	number	may	be	duplicated	within	an	MSL	
	
Forbidden	region:	using	
sequence	number	currently	
in	forbidden	region	could	
cause	duplicate	ISN	chosen	
by	“reincarnated”	connection	
	
What	to	do	on	hitting	forbidden	region	(d)?	
d) nothing:	seqno	duplicated	by	“reincarnated”	connection	
e) wait	for	MSL	before	resuming	transmission	
f)  resynchronize	sequence	number	
either	(e)	or	(f),	connection	stalled	

2
n

connection
start time

last time
this seq#
may be used

slow
xmission

fast
xmission

sequence #
wraps around

MSL

Seq #

Forbidden
Region

wait for MSL

resynchronize

clock tick

a	b	

d	
c	

e	

f	

TCP’s	Handling	of	ISN	

TCP	requires	changing	the	ISN	over	time	
• set	from	a	32-bit	clock	that	ticks	every	4	µseconds	
• which	only	wraps	around	once	every	4.55	hours	
•  unlikely	for	reincarnated	connection	to	share	seqno	

	
Connection	cannot	be	reused	for	MSL	time	
•  on	connection	tear-down,	wait	for	2MSL	
(TIME-WAIT	state,	30	secs)	
bind: Address already in use

•  on	reboot,	do	not	create	connection	for	MSL	
(2	minutes	boot	time,	so	not	a	problem)	

