) O :”‘
e COMPUTER NETWORKS

Lecture 26:
Flow Control and ARQ

Link Layer Services

Flow Control:
- pacing between adjacent sending and receiving nodes

Error Control:
- errors caused by signal attenuation, noise

+ ARQ: receiver detects presence of errors and
asks sender for retransmission

« FEC: receiver identifies and corrects bit error(s),
without resorting to retransmission

Reliable delivery between adjacent nodes

« seldom used on low bit error links (fiber, some twisted pair)
« plays an important role in wireless links with high error rates
+ Q: why do we need both link-level and end-end reliability?

Data Link Layer

The Data Link layer can be further

|
subdivided into: o
application
1. Logical Link Control (LLC): provides
flow and error control transport
« different link protocols may provide different
services, e.g., Ethernet doesn’t provide reliable network
delivery (error recovery)
| _ U |
MAC
physical

Flow Control

What is flow control?
* receiver telling sender to slow down

Why do you need flow control?

Flow control protocols at data link layer (single hop):
* XON/XOFF
* Stop & Wait Protocol

* Sliding Window Protocol

Similar issues and mechanisms apply at the
transport layer (end-to-end)

XON/XOFF Stop and Wait (S&W) Protocol

T gg‘ig;gation After sending a packet, sender must wait for
S @ acknowledgment (ACK) before sending the next packet
sender receiver Sender Receiver
S R
; . round-trip
Algorithm: oo (rit)
* S sends stream of data Time —-3--—-TRo-----------
. T:propagation
* R sends XOFF, S stops transmission pkt ' delay
* R sends XON, S resumes transmission 2t .
. . . ACK
Works OK if 7 is small, otherwise sender
. t+ 2t
can overrun receiver (Why?) e na e -
Stop & Wait Performance Stop & Wait Performance
. sender receiver
Disadvantages: first packet bit transmitted, = 0
* slow last packet bit transmitted, r =L/
* must wait for ACK even if no overrun N
. . L L first packet bit arrives
* max transmission bandwidth 1 packet/round-trip time (rtt) RTT (27) | Jast packet bit arrives

send ACK

ACK arrives, send next j
packet,r =RTT + L/p

Performance is ok if 7 is small, otherwise inefficient

Example 1: Example 2:

* link bandwith (1) = 1 Mbps, with packet size (L) = 1 Kbits, « link bandwidth (1) = 1 Gbps, propagation delay (7) = 15 ms,
transmission timeis L/ =1ms packet size (L) = 8 Kbits, transmission time is L/ .= 8 us

* if rtt (27) = 9 ms, we can send 100 pkts/sec - sender utilization (U,), fraction of time sender is sending:

* the throughput (Tg) is 100 Kbps (10% of capacity) U - Lipg 810%/10° —0.00027

" 2t+L/p 30+810°

Sliding Window:
Pipelined Flow Control

Pipelining: sender allows multiple “in-flight,”
yet-to-be-acknowledged, packets

data packet—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Pipelining: Increased Utilization

sender receiver

first packet bit transmitted, r =0 —
last bit transmitted, t = L/ ‘

r—first packet bit arrives

—last bit of 1t pkt arrives, send ACK
i~ last bit of 21 pkt arrives, send ACK
+—last bit of 3 pkt arrives, send ACK

RTT (27)

ACK arrives, send next .
packet, t=RTT + L/u |

Example 3:
« link bandwidth (#) = 1 Gbps, propagation delay (7) = 15
ms, packet size (L) = 8 Kbits, transmission timeis L/u =8
us, window size (w) = 3 rensed
- sender utilization (U,), fraction of time sender is sending: utilization
_w*L/u 3*%810°/10°
*2t+L/u 30+810°

—0.0008~ of3:

by a factor

Sliding Window

Send w number of packets before waiting for an ACK
(can have w outstanding, unACKed, packets)

offered window
{advertised by receiver)

usable window

T
1 2 3|4 5 6:7 8 9]10 n
I

can’t send until
__sentand —noiACKed T " windowmoves ™ [Stevens]
acknowledged can send ASAP

For every received ACK, slide window (over data) by 1
packet (S&W is sliding window with w = 1)

Throughput of the sliding window protocol (T,):
T,=Tw
send window size w limited by buffer size at receiver (wy):
T, = T,*MIN(w,wg)

Sliding Window: Max Window Size

What is the optimal window size?
i.e., what's the maximum number of packets on can
have outstanding (to “fill the pipe”)?

Let u be the link bandwidth, pipe size = RTT*u =27*u
(commonly called the bandwidth-delay product)

Normally you dont want to, and can't, fill the pipe
completely (more when we discuss reliable transport
protocol)

Error Control

Errors are unavoidable, caused by noise on channel:
* electrical interference, thermal noise, cosmic rays, etc.

Three kinds of transmission errors:

1. sent signal destroyed (data not received)

2. sent signal changed (received wrong data)

3. spurious signal created (received random data)

Automatic Repeat reQuest (ARQ):
sender retransmits lost or corrupted packets

Alternating Bit Protocol (ABP)

S&W with un-numbered packets and ACKs causes
confusion on retransmission:

* how to differentiate a retransmitted
frame from the next frame? scnger Receiver
S R

round-trip

time (rtt)

Time ~ -~ 37~~~ .

T:propagation
delay

* how to detect

duplicate?

ABP: uses 1 bit to number packets and ACKs

Automatic Repeat reQuest (ARQ)

Sender Receiver
S R

How does sender know when round-trip

time (rtt)
and which pkts to retransmit? ** 1t ae—_
* by the use of ACKs and timeout x

General algorithm: = -7 N\
« receiver acknowledges (ACKs) receipt of pkts "

* sender retransmits packets not ACKed by timeout
* a.k.a. PAR: Positive Acknowledgement with Retransmission

©:propagation
delay

t+T

Reliability protocols:

* Alternating Bit Protocol (ABP)

* Go-Back-N (GBN, with or without NAK)
* Selective Repeat Protocol (SRP)

ABP in Action

sender receiver

sender receiver pm
send pki0 Piig send pkio 0 rev pkio
seng ACKO send ACKO
oV ACKO /

rcv ACKO / send pktl K,
send pktl \\ (loss)
rcv pktl
send ACK1
rCVACK] fimeout
i U
send pkiQ kt O resend pki1 pKt
rcv pkio rcv pktl
send ACKO ACK send ACK1
rcvACK W
send pktO

a) operation with no loss rcv pki0
(@ op }e/ send ACKO

(b) lost packet

ABP in Action

sender receiver sender receiver
pkt kt
AR T, rovpig sondpid0. =50 rev pkio
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pki1 pkt 4 send pkil
\ rcv pkﬂC rcv pktl
ACK send ACK1 send ACK1
(loss) X/
fimeout
timeout Pkt 4 resend pkil
oo oK1 \rcv okt ‘ rcv pkil !
ACK (detect duplicate) ICVACK1 (defect duplicate)
ACK] send ACK1 send pkiO send ACK1
[CV/
kt rcv pkto
send pki0 send ACKO
ACK rcv pkto ACK
send ACKO 0
(c) lost ACK (d) premature timeout
Sender:
* puts k-bit sequence number (seq#) in packet header
* sends a “window” of up to N packets
* consecutive unACKed (una) packets allowed
d_| d_next
sn uno snd_nex dlready usable, not
ack’ed yet sent
sent, not
""" ”"”[“]I]I]I]HH H yet ack'ed [I not usable
wmdow size—4

- notation: ACK(n) means ACKs packet with seq# n

Performance of ABP

ABP works, but performance is bad

Example:

« link bandwidth (1) = 1 Gbps
- propagation delay (7) = 15 ms
- packet size (L) = 8 Kbits,

transmission timeis L/ =8 us
« sender utilization (U,) is the same as S&W:

y L/ _ 810710 o007
Y 2t+L/u 30+810°

« about 1 packet every 30 ms

+ 33 KBps or 264 Kbps throughput over a 1 Gbps link!

Go-Back-N (Link-layer)

Sender:
- associates a timer with each in-flight packet
« timeout(n): retransmits packet with seq# n
and all higher seq# in window
* resets snd_next to snd_una (n)
- resets timer for all retransmitted packets

snd uno snd next
already usable, not
ack’ed yet sent
IIIIII IIIIIIHI]HHI]I][I | sentogty || notusome
wmolow size —24
N

Go-Back-N (Link-layer)

Receiver:

* only needs to remember next expected seq# (next_seqn)

* ACKs and delivers to app

* discards out-of-order packets = no buffering!

* ACKs out-of-order packets if seq# is smaller than next_segn

Sender Receiver Sender Receiver
(why?) s % 5 R

round-trip
time (rtt)

1 =

these

rexmission g
timeout (rto) 5 S nexi_zeqn 5

%discard 3

gall these H

ACK?%}

&K A&

Go-Back-N [K&R]

Receiver:
* only needs to remember next expected seq# (next_seqn)
» cumulative ACK acknowledges all packets received in-order

.
Sender Receiver Sender Receiver
S R S R

round-trip
time (rtt)

rexmission

timeout (rto) 5discard

next_seqn
i

5

next_seqn
2

3 discard

5discard
next_seqn
=2

Go-Back-N [K&R]
Sender:
« ACK(n) is cumulative: ACKs all packets up to and including seq# n

 maintains only one active timer, for snd_una

- timeout(snd_una): retransmits snd_una and all higher seg#s in
window
* resets snd_next to snd_una

« resets timer for snd_una

snd_una snd_next
dlready usable, not
¢ i ack’ed yet sent
TRARCCEC TR DO00000 | sepmcies] onoscme
t__ window size —*%
N

Go-Back-N with Negative ACK (NAK)

Receiver:

* ACKs and delivers in-order packets

* sends NAK for first out of order packet and discards packet
* ACKs and discards subsequent out of order packets

Sender: retransmits on receiving NAK or if RTO expires

Retransmit all the

ackets from 3
Timeout P

[>l

sender

U I receiver

: Deliver : Discard these packets : Deliver

(out of order) Walrand

Selective Repeat Protocol (SRP)

Receiver:

* buffers out-of-order packets (up to wy), for in-order delivery

* ACKs all correctly (no error, but may be out-of-order)
received packets individually, not cumulatively

snd_una snd_next
I usable, not

dlready
Sender: v ack’ed yet sent

« keeps track of wp [II]I]I]HI]HIIHIIHiIIIIIHI]I]I][II]I] | sty || notusaoe

P .
and ensures that widow sze—4

ioWr
WR > (Snd_heXT _ Snd_UnO) = (a) sender view of sequence numbers

* keeps a retransmit timer it of order -
for each packet (outiered) but | (iin window)

already ack’e

+retransmitsonly [N s ===

unACKed packets - window sze—4
1 We
next_seqn
(b) receiver view of sequence numbers

Selective Repeat in Action

01234567853 Epktﬂ rcvd, delivered, ACKO sent

pktl sent 0(1 234|567 839

01234567859 pktl rcvd, delivered, ACKl1 sent

pkt2 sent 01|23 465|6 7889
0123456789 X

(loss)
pkt3 sent, window full

0123456789

pkt3 rcvd, buffered., ACK3 sent
01|23 4565|6789

non-cumulative ACK
ACKD rcvd, pktd sent

0[1 23 4/56 789

ACK1 rcvd, pktS5 sent

01|23 465|6 7889

— pkt2 TIMEOUT, pkt2 resent

01|23465/6789

pktd4 rcvd, buffered, ACK4 sent
01f2345]6 785

pktS rcvd, buffered., ACKS sent

01(2 3465|6789

pkt2 rcvd, pkt2.pkt3,pktd, pkts
delivered, ACK2 sent

012345f7839]

ACK3 rcvd, nothing sent

01f2345]6785

Selective Repeat Protocol (SRP)
Receiver:

* buffers out-of-order packets (up to wy), for in-order delivery
* ACKs all correctly received packets individually

1234567 1234567
Sender' cannot send ok to send
* keeps track of w, and ensures -~ lmksuter Pt S (why? pit,6 (why?

))
5
Tchat wg > (snd_nex’r—snd_uno), o == g
in the example, w, =4 pEE S “ =
* keeps a retransmit timer 1\1 3\‘\ e e X 52
A2 i
for each packet AN A
* retransmits only unACKed N Discard walrand
packets in receiver = = E E
Selective Acknowledgement: orie

Piggy-back NAK with ACK., e.g. [ACK2,NAK1], [ACK4,NAK3]

Selective Repeat Summary

— sender — receiver

* data from upper layer: * packet 7 in [next_seqn,

« if next available seq# in next_seqn+w,-1]
window, send packet « send ACK(n)
* timeout(n): * out-of-order: buffer

* in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

* resend packet n, restart timer

* received ACK(n) in [snd_ung,
snd_next]:
* mark pkt n as received

* packet n < next_segn

* if nis smallest unACKed
* send ACK(n)

packet, advance snd_una to
next unACKed seq# * otherwise:

* ignore

ARQ Protocols Summary

Go-Back-N [K&R]:

*sender: allowsupto N
unACKed packets in pipeline

* receiver: sends cumulative
ACKs
* repeat last ACK if there's a gap
* sender: keeps timer only for
oldest unACKed pkt

* if timer expires: retransmits all
unACKed packets

Selective Repeat

*sender: allowsupto N
unACKed packets in pipeline

* receiver: ACKs individual
packets

* sender: maintains timer for
each unACKed pkt

* if timer expires: retransmits only
unACKed packet

Ethernet: Connectionless Service

No handshaking between sending and receiving adaptor

Receiving adaptor doesn’t send ACKs or NACKSs to

sending adaptor

« stream of datagrams passed up to network layer can have gaps
- gaps will be filled if application uses reliable transport layer
» otherwise, application will see the gaps

Other data link protocols may provide error correction

and flow control

Simplifying Assumption
Infinite sequence# space

Suppose you have only a 2-bit sequence space:

Sender Receiver
S R

rexmission

timeout (rto)

= wnr

_____ 4 L
<\\\\\\\\\\\\\\\\\\\\\\\\\\\‘ 1st or
5th pkt?

Q: what's the relationship between seq# space
and window size?

Other Issues at Transport Layer

Connectionless network layer means each packet can:
* take a different path
* experience different congestion

Implications:

* non-deterministic round-trip time

* out-of-order packets must be buffered for Go-Back-N (so as
not to mistake late packets as lost packets)

» complicates computation of receiver's window (w)

