
Computer Networks


Lecture	26:	
Flow	Control	and	ARQ	

Data	Link	Layer	

The	Data	Link	layer	can	be	further	
subdivided	into:	
1.  Logical	Link	Control	(LLC):	provides	

flow	and	error	control	
•  different	link	protocols	may	provide	different	
services,	e.g.,	Ethernet	doesn’t	provide	reliable	
delivery	(error	recovery)	

2.  Media	Access	Control	(MAC):	framing	and	
media	access	

application 
 

transport 
 

network 

LLC 
MAC 

physical 

Link	Layer	Services	
Flow	Control:		
• pacing	between	adjacent	sending	and	receiving	nodes	

Error	Control:		
• errors	caused	by	signal	attenuation,	noise	
• ARQ:	receiver	detects	presence	of	errors	and	
asks	sender	for	retransmission	

•  FEC:	receiver	identifies	and	corrects	bit	error(s),	
without	resorting	to	retransmission	

Reliable	delivery	between	adjacent	nodes	
•  seldom	used	on	low	bit	error	links	(fiber,	some	twisted	pair)	
• plays	an	important	role	in	wireless	links	with	high	error	rates	
• Q:	why	do	we	need	both	link-level	and	end-end	reliability?	

Flow	Control	

What	is	flow	control?	
• receiver	telling	sender	to	slow	down	

Why	do	you	need	flow	control?	

	
Flow	control	protocols	at	data	link	layer	(single	hop):	
• XON/XOFF	
• Stop	&	Wait	Protocol	
• Sliding	Window	Protocol	

Similar	issues	and	mechanisms	apply	at	the	
transport	layer	(end-to-end)	



XON/XOFF	

Algorithm:	
• S	sends	stream	of	data	
• R	sends	XOFF,	S	stops	transmission	
• R	sends	XON,	S	resumes	transmission	
	
Works	OK	if	τ		is	small,	otherwise	sender	
can	overrun	receiver	(Why?)	

sender receiver

S R

! : propagation
delay

Stop	and	Wait	(S&W)	Protocol	
After	sending	a	packet,	sender	must	wait	for	
acknowledgment	(ACK)	before	sending	the	next	packet	

Time

Sender
S

Receiver
R

t

t+ 2!

t+ !

! : propagation
delay

2!

round-trip
time (rtt)

ACK

pkt

Stop	&	Wait	Performance	
Disadvantages:	
• slow	
• must	wait	for	ACK	even	if	no	overrun	
• max	transmission	bandwidth	1	packet/round-trip	time	(rtt)	
	
Performance	is	ok	if	τ		is	small,	otherwise	inefficient	
	
Example	1:		
•  link	bandwith	(µ) =	1	Mbps,	with	packet	size	(L)	=	1	Kbits,		
transmission	time	is	L/µ =	1	ms		
•  if	rtt	(2τ )	=	9	ms,	we	can	send	100	pkts/sec	
• the	throughput	(Tg)	is	100	Kbps	(10%	of	capacity)	

Example	2:		
•  link	bandwidth	(µ )	=	1	Gbps,	propagation	delay	(τ ) = 15	ms, 
packet	size	(L)	=	8	Kbits,	transmission	time	is	L/µ =	8	µs		
•  sender	utilization	(Us),	fraction	of	time	sender	is	sending:	

first	packet	bit	transmitted, t = 0 
sender	 receiver	

RTT (2τ ) 

last	packet	bit	transmitted, t = L/µ

first	packet	bit	arrives	
last	packet	bit	arrives,	
send	ACK	

ACK	arrives,	send	next		
packet,	t = RTT + L/µ

Us =
L / µ

2τ + L / µ
=
8·103 /109

30 + 8·10−6 = 0.00027

Stop	&	Wait	Performance	



Sliding	Window:		
Pipelined	Flow	Control	

Pipelining:	sender	allows	multiple	“in-flight,”	
yet-to-be-acknowledged,	packets	

Sliding	Window	
Send	w	number	of	packets	before	waiting	for	an	ACK	
(can	have	w	outstanding,	unACKed,	packets)	
	
	
	
	
For	every	received	ACK,	slide	window	(over	data)	by	1	
packet	(S&W	is	sliding	window	with	w = 1)	

Throughput	of	the	sliding	window	protocol	(Tw):	
Tw = Tg*w

send	window	size	w	limited	by	buffer	size	at	receiver	(wR):	
Tw = Tg*MIN(w,wR)

[Stevens]

Example	3:		
•  link	bandwidth	(μ)	=	1	Gbps,	propagation	delay	(τ ) = 15 
ms, packet	size	(L) = 8	Kbits,	transmission	time	is	L/µ =	8	
µs,	window	size	(w) = 3
•  sender	utilization	(Us),	fraction	of	time	sender	is	sending:	

Pipelining:	Increased	Utilization	
first	packet	bit	transmitted,	t = 0

sender	 receiver	

RTT (2τ ) 

last	bit	transmitted,	t = L/µ

first	packet	bit	arrives	
last	bit	of	1st	pkt	arrives,	send	ACK	

ACK	arrives,	send	next		
packet,	t = RTT + L/µ

last	bit	of	2nd	pkt	arrives,	send	ACK	
last	bit	of	3rd	pkt	arrives,	send	ACK	

increased	
utilization	
by	a	factor	
of	3!	Us =

w * L / µ
2τ + L / µ

=
3*8·103 /109

30 + 8·10−6 = 0.0008

Sliding	Window:	Max	Window	Size	

What	is	the	optimal	window	size?	
i.e.,	what’s	the	maximum	number	of	packets	on	can	
have	outstanding	(to	“fill	the	pipe”)?	
	
Let	μ	be	the	link	bandwidth,	pipe	size	=	RTT*μ	=	2τ *μ	
(commonly	called	the	bandwidth-delay	product)	
	
Normally	you	don’t	want	to,	and	can’t,	fill	the	pipe	
completely	(more	when	we	discuss	reliable	transport	
protocol)	



Error	Control	
Errors	are	unavoidable,	caused	by	noise	on	channel:	
• electrical	interference,	thermal	noise,	cosmic	rays,	etc.	

Three	kinds	of	transmission	errors:	
1.  sent	signal	destroyed	(data	not	received)	
2.  sent	signal	changed	(received	wrong	data)	
3.  spurious	signal	created	(received	random	data)	

Automatic	Repeat	reQuest	(ARQ):	
sender	retransmits	lost	or	corrupted	packets	

Automatic	Repeat	reQuest	(ARQ)	
How	does	sender	know	when	
and	which	pkts	to	retransmit?	
• by	the	use	of	ACKs	and	timeout	

General	algorithm:	
• receiver	acknowledges	(ACKs)	receipt	of	pkts	
• sender	retransmits	packets	not	ACKed	by	timeout	
• a.k.a.	PAR:	Positive	Acknowledgement	with	Retransmission	
	
Reliability	protocols:	
• Alternating	Bit	Protocol	(ABP)	
• Go-Back-N	(GBN,	with	or	without	NAK)	
• Selective	Repeat	Protocol	(SRP)	

Time

Sender
S

Receiver
R

t

t+ 2τ

t+ τ

τ : propagation
delay

2τ

round-trip
time (rtt)

pkt
X

pkt lost

pkt
rexmitted

Alternating	Bit	Protocol	(ABP)	
S&W	with	un-numbered	packets	and	ACKs	causes	
confusion	on	retransmission:	
• how	to	differentiate	a	retransmitted	
frame	from	the	next	frame?	

	
	
	
	
	
	
	
ABP:	uses	1	bit	to	number	packets	and	ACKs	

Time

Sender
S

Receiver
R

t

t+ 2τ

t+ τ

τ : propagation
delay

2τ

round-trip
time (rtt)

ACK

pkt

X
ACK lost

how to detect
duplicate?

ABP	in	Action	



ABP	in	Action	
ABP	works,	but	performance	is	bad	
Example:		
•  link	bandwidth	(µ )	=	1	Gbps	
•  propagation	delay	(τ ) = 15 ms	
•  packet	size	(L)	=	8	Kbits,		
transmission	time	is	L/µ =	8	µs		
•  sender	utilization	(Us)	is	the	same	as	S&W:	

•  about	1	packet	every	30	ms	
•  33	KBps	or	264	Kbps	throughput	over	a	1	Gbps	link!	

Performance	of	ABP	

Us =
L / µ

2τ + L / µ
=
8·103 /109

30 + 8·10−6 = 0.00027

Go-Back-N	(Link-layer)	
Sender:	
•  puts	k-bit	sequence	number	(seq#)	in	packet	header	
•  sends	a	“window”	of	up	to	N	packets	
•  consecutive	unACKed	(una)	packets	allowed	
	

	
	
• notation:	ACK(n)	means	ACKs	packet	with	seq#	n	

snd_una snd_next 

Go-Back-N	(Link-layer)	
Sender:	
• associates	a	timer	with	each	in-flight	packet	
•  timeout(n):	retransmits	packet	with	seq#	n	
and	all	higher	seq#	in	window	
•  resets	snd_next	to	snd_una (n)

•  resets	timer	for	all	retransmitted	packets 

snd_una snd_next 



Go-Back-N	(Link-layer)	
Receiver:	
• only	needs	to	remember	next	expected	seq#	(next_seqn)	
• ACKs	and	delivers	to	app	packets	that	arrived	in	order	
• discards	out-of-order	packets	�	no	buffering!	
• ACKs	out-of-order	packets	if	seq#	is	smaller	than	next_seqn	
(why?)	

2τ

round-trip
time (rtt)

rexmission
timeout (rto)

Sender
S

Receiver
R

ACK(1)

Pkts

X

1
2
3
4

1
2
3
4

5

2
3
4
5

2
3
4
5

discard
all these

5

ACK(3)
ACK(4)

ACK(5)

ACK(3)
ACK(4)

ACK(2)

ACK(5)

Sender
S

Receiver
R

Pkts
X

1
2
3
4

1
3
4

5

2
3
4
5

2
3
4
5

discard
these

5discard

ACK(1)

ACK(3)
ACK(4)

ACK(2)

ACK(5)

next_seqn
= 5

next_seqn
= 6

next_seqn
= 2

next_seqn
= 2

snd_una snd_next 

Go-Back-N	[K&R]	
Sender:	
• ACK(n)	is	cumulative:	ACKs	all	packets	up	to	and	including	seq#	n	
• maintains	only	one	active	timer,	for	snd_una	
•  timeout(snd_una):	retransmits	snd_una	and	all	higher	seq#s	in	
window	
•  resets	snd_next	to	snd_una 

•  resets	timer	for	snd_una 

Go-Back-N	[K&R]	
Receiver:	
• only	needs	to	remember	next	expected	seq#	(next_seqn)	
• cumulative	ACK	acknowledges	all	packets	received	in-order	
• out-of-order	packets	repeat	the	last	ACK	

2τ

round-trip
time (rtt)

Sender
S

Receiver
R

ACK(1)

Pkts

X

1
2
3
4

1
2
3
4

5
6
7
8

6
7
8

5

ACK(3)
ACK(4)

ACK(5)

ACK(6)
ACK(7)
ACK(8)

Sender
S

Receiver
R

Pkts
X

1
2
3
4

1
3
4

5

2
3
4
5

2
3
4
5

discard
these

5discard

ACK(1)

ACK(3)
ACK(4)

ACK(2)

ACK(5)

ACK(1)

ACK(1)

rexmission
timeout (rto)

next_seqn
= 5

next_seqn
= 9

next_seqn
= 2

next_seqn
= 2

Go-Back-N	with	Negative	ACK	(NAK)	

sender	

receiver	

Walrand	

Receiver:	
• ACKs	and	delivers	in-order	packets	
• sends	NAK	for	first	out	of	order	packet	and	discards	packet	
• ACKs	and	discards	subsequent	out	of	order	packets	
	
Sender:	retransmits	on	receiving	NAK	or	if	RTO	expires	



Selective	Repeat	Protocol	(SRP)	

wR

wR

snd_una snd_next 

next_seqn 

Receiver:	
• buffers	out-of-order	packets	(up	to	wR),	for	in-order	delivery	
• ACKs	all	correctly	(no	error,	but	may	be	out-of-order)	
received	packets	individually,	not	cumulatively	

Sender:	
• keeps	track	of	wR	
and	ensures	that	
wR	>	(snd_next	−	snd_una)	
• keeps	a	retransmit	timer	
for	each	packet	
• retransmits	only	
unACKed	packets	

Selective	Repeat	Protocol	(SRP)	
Receiver:	
• buffers	out-of-order	packets	(up	to	wR),	for	in-order	delivery	
• ACKs	all	correctly	received	packets	individually	

Sender:	
• keeps	track	of	wR	and	ensures		
that	wR	>	(snd_next	−	snd_una),	
in	the	example,	wR	=	4	

• keeps	a	retransmit	timer	
for	each	packet	
• retransmits	only	unACKed	
packets	

Selective	Acknowledgement:	
Piggy-back	NAK	with	ACK.,	e.g.	[ACK2,NAK1],	[ACK4,NAK3]	

cannot	send	
pkt	5	(why?)	

ok	to	send	
pkt	6	(why?)	

1 2 3 4 5 6 71 2 3 4 5 6 7

Walrand	

Selective	Repeat	in	Action	

non-cumulative	ACK	

Selective	Repeat	Summary	

• data	from	upper	layer:	
•  if	next	available	seq#	in	
window,	send	packet	

• timeout(n):	
•  resend	packet	n,	restart	timer	

• received	ACK(n)	in	[snd_una,	
snd_next]:	
• mark	pkt	n	as	received	
•  if	n	is	smallest	unACKed	
packet,	advance	snd_una	to	
next	unACKed	seq#		

sender	

• packet	n	in	[next_seqn,	
next_seqn+wR�1]	
•  send	ACK(n)	
•  out-of-order:	buffer	
•  in-order:	deliver	(also	deliver	
buffered,	in-order	packets),	
advance	window	to	next	not-yet-
received	packet	

• packet	n	<	next_seqn	
•  send	ACK(n)	

• otherwise:		
•  ignore	

receiver	



ARQ	Protocols	Summary	
Go-Back-N	[K&R]:	
• sender:	allows	up	to	N	
unACKed	packets	in	pipeline	
• receiver:	sends	cumulative	
ACKs	
•  repeat	last	ACK	if	there’s	a	gap	
• sender:	keeps	timer	only	for	
oldest	unACKed	pkt	
•  if	timer	expires:	retransmits	all	
unACKed	packets	

Selective	Repeat	
• sender:	allows	up	to	N	
unACKed	packets	in	pipeline	
• receiver:	ACKs	individual	
packets	
• sender:	maintains	timer	for	
each	unACKed	pkt	
•  if	timer	expires:	retransmits	only	
unACKed	packet	

Simplifying	Assumption	
Infinite	sequence#	space	

Suppose	you	have	only	a	2-bit	sequence	space:	
	
	
	
	
	
	
	
	
Q:	what’s	the	relationship	between	seq#	space	
and	window	size?	

Sender
S

Receiver
R

ACKs

Pkts

rexmission
timeout (rto)

1
2
3
4

1
2
3
4

1

X

1st or
5th pkt?

Ethernet:	Connectionless	Service	
No	handshaking	between	sending	and	receiving	adaptor	

Receiving	adaptor	doesn’t	send	ACKs	or	NACKs	to	
sending	adaptor	
•  stream	of	datagrams	passed	up	to	network	layer	can	have	gaps	
•  gaps	will	be	filled	if	application	uses	reliable	transport	layer	
•  otherwise,	application	will	see	the	gaps	

Other	data	link	protocols	may	provide	error	correction	
and	flow	control	

Other	Issues	at	Transport	Layer	
Connectionless	network	layer	means	each	packet	can:	
• take	a	different	path	
• experience	different	congestion	

Implications:	
• non-deterministic	round-trip	time	
• out-of-order	packets	must	be	buffered	for	Go-Back-N	(so	as	
not	to	mistake	late	packets	as	lost	packets)	
• complicates	computation	of	receiver’s	window	(w)


