
Computer Networks

Lecture	25:	
UDP	Socket	

User	Datagram	Protocol	(UDP)	

UDP	service:	
• “no	frills,”	“bare	bones”	extension	of	best-effort	IP	
• “best	effort”	service,	UDP	segments	may	be:	
•  lost	
•  delivered	out	of	order	to	app	
• connectionless:	
•  no	handshaking	between	UDP	sender	and	receiver	

•  each	UDP	segment	handled	independently	of	others	

UDP	[RFC	768]	

src	port	#	 dst	port	#	

32	bits	

Application	
data		

(message)	

length	 checksum	
length,	in	bytes,	of	

UDP	segment,	
including	header	

Checksum:	
•  checksum	computed	
including	pseudo	IP	header	
(containing	src	and	dst	IP	
addresses,	protocol,	
segment	length)	

•  computed	with	all	0’s	in	the	
checksum	field	

•  Internet	checksum:	1’s	
complement	of	1’s	
complement	sum	

�  when	checksum	is	
computed	at	receiver,		
result	is	0

UDP	segment	format	

UDP	Socket	
UDP	socket	identified	by	the	tuple:	
<dest IP address, dest port number> 

(contrast	with	TCP’s	four-tuple!)	

When	a	host	receives	a	UDP	segment,	it:	
•  checks	the	destination	port	number	and	
•  directs	the	UDP	segment	to	the	socket	with	that	port	number	
⇒  IP	datagrams	with	different	source	IP	addresses	and/or	source	

port	numbers	are	directed	to	the	same	socket	



Connectionless	Demultiplexing	

client	
IP:B	

P2	

client	
	IP:	A	

P1	P1	P3	

server	
IP:C	

SP:	6428
DP:	9157

SP:	9157
DP:	6428

SP:	6428
DP:	5775

SP:	5775
DP:	6428

SP	provides	“return	address”	

UDP	Socket	
Similar	to	TCP’s	stream	sockets,	except:	
•  sockets	created	using	SOCK_DGRAM	instead	of	
SOCK_STREAM	
•  no	need	for	connection	establishment	and	termination	

•  no	connect-bind,	listen,	accept	handshaking,		
but	server	must	still	always	call	bind()	
•  client	doesn’t	need	to	call	connect()	
though	client	may	use	connect()	to	tell	kernel	to	
“remember”	the	server’s	address	and	port#	

Data	Transmission	
No	“connection”	between	sender	and	receiver	

•  sender	explicitly	attaches	IP	address	and	port#	of	
destination	to	each	packet,	by	using	sendto()	
instead	of	send() 
•  send()	can	still	be	used	if	server’s	address	and	port#	have	been	
“registered”	with	kernel	using	connect()	

•  if	receiver	uses	recvfrom()	it	can	extract	IP	address	
and	port#	of	sender	from	received	packet	
•  if	these	are	not	needed,	recv()	may	be	used	instead	

Transmitted	data	may	be	delivered	out	of	order,	
or	not	delivered	at	all	

No	Connection	

Stevens	



Somewhere	in	the	socket	structure:	
	
	
	
	
	
TCP	Server:	
	
	
	
	
	
TCP	Client:	

Socket	Addresses	

UDP	Server:	

	

	

	

	

UDP	Client:	

Data	Transmission	

Stevens	

UDP	packets	have	boundaries,	
not	forming	a	byte-stream	as	
in	TCP,	so	recv()	retrieves	
one	message	at	a	time,	
i.e.,	no	need	to	call	
recv()	in	a	loop	
•  call	to	recv()	returns	
the	whole	packet	

•  cannot	retrieve	only	
parts	of	a	packet	

•  to	inspect	a	packet	call	recv()	
with	flags=MSG_PEEK 

•  same	for	recvfrom()	and	
recvmsg() 

Socket	Buffers	

When	receiver’s	socket	receive	buffer	is	full,	incoming	
UDP	packets	will	simply	be	dropped	
	
If	sender’s	socket	send	buffer	is	smaller	than	the	size	of	
UDP	data	passed	to	send(),	send()	returns	-1	and	
the	system	global	variable	errno	is	set	to	EMSGSIZE 
	
The	APIs	getsockopt()	and	setsockopt()	are	used	
to	query	and	set	socket	options,	including	the	
SO_RCVBUF	and	SO_SNDBUF	options	

Lab5	Demo	
Best-effort	netimg	with	no	flow-control	and	no	
error-control	

Learn	how	to	set	send	and	receive	buffer	sizes	

Play	with	different	receive	buffer	sizes	and	observe	
effect	of	lack	of	flow	control	

Play	with	different	drop	rates	and	observe	effect	of	
lack	of	error	control	

Learn	how	to	send	and	receive	large	data	buffer	
using	gather	write	(sendmsg())	and	scatter	read	
(recvmsg())	



FILE	IN	MEMORY	

How	to	Send	a	Large	File	
Error	recovery	and	correction	both	require	
associating	data	with	sequence	number	(sqn)	

How	to	attach	sequence	numbers	to	chunks	
of	data	to	be	sent	(assuming	1K	segment)?	

sqn0

sqn1K

sqn2Ksqn3Ksqn4K

sqn5K

sqn6K
sqn7K

sqn8K

0 1K 2K 3K

4K 5K 6K 7K

8K

sqn	

FILE	IN	MEMORY	

Gather	Write	

i/o	vector	send	this	�	
sqn0

sqn0

sqn1K

sqn2Ksqn3Ksqn4K

sqn5K

sqn6K
sqn7K

sqn8K

sqn1Ksqn2Ksqn3Ksqn4Ksqn5Ksqn6Ksqn7Ksqn8K

to	be	sent	on	network:	

Output	data	is	gathered	
from	multiple	buffers	

reused!	

sqn	

MEMORY	BUFFER	

Scatter	Read	

receive	into	here	�	
sqn0

sqn0

sqn1K

sqn2Ksqn3Ksqn4K

sqn5K

sqn6K
sqn7K

sqn8K

sqn1Ksqn2Ksqn3Ksqn4Ksqn5Ksqn6Ksqn7Ksqn8K

received	from	network:	

i/o	vector	

Input	data	is	scattered	
into	multiple	buffers	

reused!	 sqn	

MEMORY	BUFFER	

Out-of-Order	Packets	

receive	into	here	�	
sqn0

sqn0

sqn2Ksqn3Ksqn4K

sqn5K

sqn6K
sqn7K

sqn8K

sqn2Ksqn3Ksqn4Ksqn5Ksqn6Ksqn7Ksqn8K

received	from	network:	

i/o	vector	
reused!	



Data	Scatter/Gather	
The	socket	APIs	for	scatter-gather	I/O	are	
recvmsg(sd, msg, flags)	and	
sendmsg(sd, msg, flags)	

used	to	identify	
destination	when	
sending	

pointer	to	a	
vector	of	

pointers	to	
data	buffers	

where	sender	
information	is	stored	
when	receiving	

TCP	can	also	use	sendto(),	
recvfrom(),	sendmsg(),	
and	recvmsg() 

[Stevens]	

sqn

Lab5:	Sequence	Number	
Sequence	number	is	per	byte,	not	per	packet	

The	sequence	number	attached	to	a	packet	is	the	
sequence	number	of	its	first	byte	

The	sequence	number	of	a	byte	is	its	byte	offset	
from	the	start	of	image	buffer	

This	enables	out-of-order	data	to	be	placed	in	its	
right	position	in	the	image	buffer	

Lab5:	Interoperability	Testing	

Home	firewall	may	block	UDP	packets	
	
Use	“ssh -Y”	to	test	client	on	CAEN	eecs489	
hosts	if	UDP	blocked	by	home	firewall	
•  on	Windows,	use	MobaXterm	or	similar	tools	that	supports	
X	forwarding	

	
VNC	may	have	OpenGL	compatibility	issues	and	is	
slower	


