
Computer Networks


Lecture	24:	
Cloud	Computing	and	

Data	Center	Networking	

Utility	Computing
August	2006:	Amazon	Elastic	Compute	Cloud,	EC2+S3
• first	successful	IaaS	offering	

IaaS	==	Infrastructure	as	a	Service	
• swipe	your	credit	card,	and	spin	up	your	VM	

Provides	utility	computing:	
•  computing	resources	as	a	metered	service	(“pay	as	you	go”)	
•  ability	to	dynamically	provision	virtual	machines	

Why	utility	computing?	
•  cost:	CAPEX	vs.	OPEX	
•  scalability:	“infinite”	capacity	
•  elasticity:	scale	“out”	(or	in)	on	demand	

[Joshi&Lagar-Cavilla,	Lin]	

I	think	there	is	a	world	
market	for	about	five	
computers.	

Evolution	into	PaaS	
Platform	as	a	Service	(PaaS)	is	higher	level	
• simpleDB	(relational	tables)	
• simple	queue	service	
• elastic	load	balancing	
• flexible	payment	service	

PaaS	diversity	(and	lock-in)	
• Amazon’s	Elastic	Beanstalk	(upload	your	JAR)	
• Microsoft	Azure:	.NET,	SQL	
• Google	AppEngine:	python,	java,	GQL,	memcache	
• Heroku:	ruby,	python,	node.js,	php,	java	
• Joyent:	node.js	and	javascript	

[Joshi&Lagar-Cavilla]	

IaaS	vs.	PaaS	
Hardware-centric	vs.	API-centric	

Never	care	about	drivers	again	
•  or	sys-admins,	or	power	bills	

You	can	scale	if	you	have	the	money	
•  you	can	deploy	on	two	continents	
•  and	ten	thousand	servers	
•  and	20TB	of	storage	

x86 JAR	

Byte	 Key		
Value	

IaaS 	PaaS	

[Joshi&Lagar-Cavilla]	



Your	New	Concerns	
App	provider:	
• how	will	I	horizontally	scale	my	application	
• how	will	my	application	deal	with	distribution	

•  latency,	partitioning,	concurrency	

• how	will	I	guarantee	availability	
•  failures	will	happen	
•  dependencies	are	unknown	

Cloud	provider:	
• how	will	I	maximize	multiplexing?	
• can	I	scale	and	provide	performance	guarantees?	
• how	can	I	diagnose	infrastructure	problems?	
	
	

[Joshi&Lagar-Cavilla]	

From	Cloud-User’s	POV	
Cloud	is	like	the	IP	layer	
•  it	provides	a	best-effort	substrate	
•  is	cost-effective	
•  is	on-demand	
•  provides	compute	and	storage	infrastructure	

But	you	have	to	build	your	own	reliable	service	
•  fault	tolerance	
•  availability,	durability,	QoS	

[Joshi&Lagar-Cavilla]	

Everything	as	a	Service	
Utility	computing	=	Infrastructure	as	a	Service	(IaaS)	
• why	buy	machines	when	you	can	rent	cycles?	
•  examples:	Amazon’s	EC2,	Rackspace	

Platform	as	a	Service	(PaaS)	
•  give	me	a	nice	API	and	take	care	of	the	maintenance,	upgrades,	…	
•  example:	Google	AppEngine,	Heroku	

Software	as	a	Service	(SaaS)	
•  Just	run	it	for	me!	
•  example:	Gmail,	GoogleDocs,	Salesforce,	
Adobe’s	Creative	Cloud,	Microsoft’s	Office365

[Lin]	

Cloud	Computing:	Summary	
NIST’s	definition:	services	accessed	over	a	standardized	
network	with	the	following	characteristics:	

• on-demand	self-service:	a	customer	can	order	compute	
resources	without	any	human	interaction	with	provider	

• resource	pooling:	provider’s	physical	and	virtual	resources	
pooled	to	serve	multiple	customers	dynamically	

• rapid	elasticity:	resources	appear	unlimited	and	can	be	scaled	
up	or	down	rapidly	

• measured	service:	metered	usage	(and	billing)	

• broad	network	access:	available	over	the	Internet,	platform	
independent:	mobile,	laptops,	tablets	



Anatomy	of	a	Datacenter	

Source:	Barroso	and	Urs	Hölzle	(2009)	 Source: IEEE Spectrum and Google

How	Much	Power	Needed?	

• 0.0003	kWh	to	answer	a	typical	Google	search	
• 0.05 kW	to	use	a	laptop	for	an	hour	
• 0.1 kW	to	run	a	ceiling	fan	for	an	hour	
• 1.1 kW	to	use	a	coffee	maker	for	an	hour	
• How	much	power	is	30 MW?
• 6,000	average	homes	with	central	air	(~5 kW/home)		
• 300	fast	food	restaurants		
• 45	large	retail	stores 
• 37	grocery	stores		
• 30	large	home	improvement	stores		
• 1.5	Sears	Towers		
• 1	computer	data	center		

Data	Center	Networks		
Tens	to	hundreds	of	thousands	of	hosts,	often	closely	
coupled,	in	close	proximity:	
•  e-commerce	(e.g.,	Amazon)	
•  content	servers	(e.g.,	NetFlix,	YouTube,	Apple,	Microsoft)	
•  search	engines,	data	mining	(e.g.,	Google)	
	
Challenges:	
• multiple	applications,	each	serving	
massive	numbers	of	clients		

• managing/balancing	load,	
avoiding	processing,	networking,	
data	bottlenecks	

Inside	a	40-ft	Microsoft	container,		
Chicago	data	center	

Server	(blade)	racks	

Top-of-Rack	(ToR)	/edge	
switches	

Tier-1/core	switches	

Tier-2/aggregation	switches	

load		
balancer	

load		
balancer	

1 2 3 4 5 6 7 8

border	router	

access	router	

Internet	

Data	Center	Networks		
Load	balancer:		layer-4	“switch”	
•  receives	external	client	requests	
•  directs	workload	within	data	center	
•  returns	results	to	external	client	
(hiding	data	center	internals	from	
client)	



Potential	Network	Bottleneck	
Host	–	ToR:	1	Gbps	
ToR	–	Tier	2	and	Tier	1	–	Tier	2:	each	10	Gbps	
10	hosts	on	rack	1	each	talk	to	a	different	host	on	rack	5
Similarly	between	racks	2	–	6,	3	–	7,	and	4	–	8		
	
40	flows	share	the	10	Gbps	A	–	B	link,	
each	gets	only	10/40	= 250	Mbps,	
only	¼	of	the	1	Gbps	
host	–	ToR	capacity	

B	

1 2 3 4 5 6 7 8

A	 C	
10	Gbps	

10	Gbps	

1	Gbps	

Fat-tree	Topology	with	k = 4
Rich	interconnection	among	switches,	a.k.a.	Clos	network	
•  increased	throughput	between	racks	
Equal	Cost	Multi-Path	(ECMP)	routing	
•  increased	reliability	via	redundancy	
• originally	intended	for	data	center	with	off-the-shelf	parts	

Server/hosts	

Top-of-Rack	(ToR)	/edge	
switches	

Tier-1/core	switches	

Tier-2/aggregation	
switches	

Fat-tree	Architecture	
k-ary	fat-tree:	three-layer	topology	
•  k	pods,	each	consists	of	(k/2)2	hosts	and	two	layers	of	switches,	
each	layer	has k/2	k-port	switches	

•  each	ToR	switch	connects	to	k/2	hosts	and	k/2	Tier-2	switches	
•  each	Tier-2	switch	connects	to	k/2	ToR	and	k/2	Tier-1	switches	
•  (k/2)2 Tier-1	switches:	each	connects	to	all	k	pods	
•  supports	k3/4	hosts,	k < 256,	fat-tree	does	not	scale	indefinitely	

Server/hosts	

Top-of-Rack	(ToR)	/edge	
switches	

Tier-1/core	switches	

Tier-2/aggregation	
switches	

[Beyer]	

Cost	Analysis	

Maximum	possible	cluster	size	with	all	hosts	capable	of	
fully	utilizing	uplink	capacity	

Hierarchical	design	uses	higher-speed,	and	more	
expensive,	switches	higher	up	in	the	hierarchy	(scale	up)	



Addressing	in	Fat-tree	
Use	10.0.0.0/8	private	addressing	block	

Pod	switches	have	address	10.pod.switch.1 
•  pod	and	switch	in	range	[0, k-1], based	on	position	
	
Tier-1	switches	have	address	10.k.i.j 
•  i	and	j	denote	switch	position	in	(k/2)2	Tier-1	switches	

Hosts	have	address	10.pod.switch.ID 
•  ID	in	range	[2, (k/2) + 1],	for	k = 4,	ID	can	only	be	2	or	3	

10.0.0.1

10.0.3.1

10.0.0.2 10.0.0.3 10.0.1.3 10.2.1.2 10.2.1.3

[Beyer]	

Forwarding	in	Fat-tree	
Tier-1	switches	contain	(10.pod.0.0/16, port)	entries	
•  statically	forwards	inter-pod	traffic	on	specified	port	

• 10.4.1.1’s	routing	table:	

[Beyer]	

Top-of-Rack	(ToR)	/edge	
switches	

Tier-1/core	switches	

Tier-2/aggregation	
switches	

Prefix Output port
10.0.0.0/16 0
10.1.0.0/16 1
10.2.0.0/16 2
10.3.0.0/16 3

0
1 2

3

10.2.1.2 10.2.1.3

10.2.1.1

10.2.0.2 10.2.0.3

Tier-2’s	Two-Level	Lookup	Table	
Prefix	table	contains	(10.pod.switch.0/24, port)	entries	
•  switch	value	is	the	ToR	switch	number	
•  used	for	forwarding	
intra-pod	traffic	

Suffix	table	used	for	forwarding	
inter-pod	traffic	

0 1
2

3

[Beyer]	

Recall:	for	k = 4,	host	
ID	can	only	be	2	or	3

0
1 2

3

Tier-2’s	Forwarding	Algorithm	

Prefix	table	prevents	intra-pod	traffic	from	leaving	pod	

Suffix	table	for	inter-pod	traffic	based	off	host	IDs:	
•  ensures	spread	of	traffic	across	Tier-1	switches	
•  prevents	packet	reordering	by	assigning	a	single	static	path	
for	each	host-to-host	communication	
•  better	than	having	a	single	path	between	subnets	

[Beyer]	



ToR	Switch’s	Forwarding	

Inter-rack	traffic	relies	on	switch’s	original	backward	
learning	algorithm	
	
Assumes	forwarding	tables	generated	by	a	central	
controller	with	full	knowledge	of	topology	
•  central	controller	also	responsible	for	
detecting	switch	failures	and	re-routing	traffic	

•  and	for	answering	ARP	and	DHCP	requests	

[Beyer]	

Fat-tree	Routing	Example	

Server/hosts	

Top-of-Rack	(ToR)	/
edge	switches	

Tier-1/core	switches	

Tier-2/aggregation	
switches	

Packets	from	source	10.0.1.2	to	
destination	10.2.0.3	take	the	dashed	path	

Two-Level	Lookup	Implementation	
Implemented	in	hardware	using	a	TCAM	
•  TCAM:	Ternary	(0,	1,	don’t	care)	Content-Addressable	Memory	
•  can	perform	parallel	lookups	across	table	
•  stores	don’t	care	bits,	suitable	for	variable	length	prefixes	

Prefixes	preferred	over	suffixes	

lookup	
incoming	
address	

[Beyer]	

of switch 10.2.2.1 in the example network

Topology	Power/Heat	Dissipation	



Packaging	Problem	
Fat-tree	has	significant	cabling	overhead	
•  1	GigE	switches	used	to	reduce	cost	
•  lack	of	10	GigE	ports	leads	to	more	cabling	

A	packaging	solution	for	k = 48
•  generalizes	to	other	values	of	k

Cabling	in	general	can	be	
a	problem	in	data	center	
networks	.	.	.	.	

[Beyer]	

VL2:	
•  also	based	on	

Clos	network	
•  but	has	a	more	flexible	
addressing	scheme	

•  runs	link-state	routing	
•  does	network	load	
balancing	

	
	
Other	topologies	have	the	hosts	themselves	also	serve	
as	routers	

Other	DC	Network	Topologies	

Network	Security	Evolved	
Virtual	private	clouds	
•  internal	VLANs	within	cloud	
•  virtual	network	functions	(VNFs):	virtual	gateways,	
virtual	firewalls:	middleboxes	implemented	in	software	
• remove	external	addressability	
• MPLS	VPN	connection	to	cloud	gateway	
• but	doesn’t	protect	external	
facing	assets	

•  providers:	Amazon,	Google,	
Microsoft,	etc.	

[Amazon	AWS]	

Information	Leakage	
Is	your	target	in	a	cloud?	
•  traceroute	
•  network	triangulation	

Every	VM	gets	its	private/public	IP	
Are	you	on	the	same	machine	as	target?	
•  IP	addresses	
•  latency	checks	
•  side	channels	(cache	interference)	

Can	you	get	on	the	same	machine?	
•  pigeon-hole	principle	(n	items,	m	containers,	n > m	⇒	some	
containers	must	be	shared)	

•  placement	locality	
[Joshi&Lagar-Cavilla]	



Source:	Voas	and	Zhang,	“Cloud	Computing:	New	Wine	or	Just	a	New	Bottle?”	
IT	Professional,	11(2):15–17,	March	2009	

[Joshi&Lagar-Cavilla]	

IBM PC�
1981

Ethernet 802.3�
1983

Commercial Internet�
1995

Amazon EC2�
2006

Data	center	
network	as	
a	switch	

SETI@home�
1999

The	circle	is	now	complete…	


