

Inter-domain Routing and BGP

Routing on the Internet

In the beginning there was the ARPANET: • route using GGP (Gateway-to-Gateway Protocol), a distance vector routing protocol

Problems:

• needed "flag-hour" to update routing protocol

incompatibility across vendors ~~

Routing on the Internet

Solution: hierarchical routing

• administrative autonomy:

- each network admin can control routing within its own network
- internet: network of networks
- allows the Internet to scale:
- with 200 million hosts, each router can't store all destinations in its routing table
- route updates alone will swamp the links

Aggregate routers into regions of "autonomous systems" (ASs)

Lecture 17:

Hierarchical Routing

Gateway/border router

- neighboring ASs interact to coordinate routing
- direct link to router in other AS(s)
- keeps in its routing table:
- $\boldsymbol{\cdot}$ next hop to other ASs
- all hosts within its AS
- hosts within an AS only keep a default route to the border router

3.1	
dest	next
1.*	1.1
2.*	2.1
4.*	2.1
3.2	3.2
3.3	3.3
3.4	3.4

Hierarchical Routing

Routers in the same AS run same routing protocol

- "intra-AS" routing protocol
- each AS uses its own link metric
- routers in different ASs can run different intra-AS routing protocol
- internal topology is not shared between ASs

The NSFNet 1989

Area hierarchy:

- backbone/core: NSFNet
- regional networks: MichNet,
- BARRNET, Los Nettos,
- Cerfnet, JVCNet, NEARNet, etc.
- campus networks

Sketch of the Internet around 1990

point of presence

NSENet

Regional networks

[Walrand]

Customer

network

Users

backbone

Commercialization (1994)

Roughly hierarchical

At center: "Tier-1" ISPs

- Tier-1 ASs: top of the Internet hierarchy of ~10 Ass: AOL, AT&T, Global Crossing, Level3, Verizon/UUNET, NTT, Qwest, SAVVIS (formerly Cable & Wireless), Sprint, etc.
- full (N²) peering relationships between Tier-1 providers
- has no upstream provider
- national/international coverage

AS Structure: Other ASs

Lower tier providers

- provide transit service to downstream customers
- but, need at least one provider of their own
- typically have national or regional scope
- includes several thousand ASs

Stub ASs

- do not provide transit service to others
- connect to one or more upstream providers
- includes the vast majority (e.g., 85-90%) of the ASs

"Tier-2" ISPs: Smaller (Often Regional) ISPs

"Tier-3" ISPs and Local ISPs

Last hop ("access") network (closest to end systems)

A Packet Passes Through Many Networks

AS Number Trivia

AS number is a 16-bit quantity

• 65,536 unique AS numbers

Some are reserved numbers (e.g., for private ASs)

• only 64,510 are available for public use

Managed by Internet Assigned Numbers Authority (IANA)

- gives blocks of 1,024 to Regional Internet Registries
- RIRs assign AS numbers to institutions
- 49,649 AS numbers in visible use (Feb '15)

In 2007 started assigning 32-bit AS #s

Growth of AS numbers

Interdomain Routing

AS-level topology

- destinations are CIDR address prefixes (APs, e.g., 12.0.0/8)
- nodes are Autonomous Systems (ASs)
- edges are business relationships

[Rexford]

Challenges for Interdomain Routing

Scale

- address prefixes (APs): 200,000 and growing
- ASs: ~50,000 visible ones, and 60K allocated
- · routers: at least in the millions

Proprietary information:

- ASs don't want to divulge internal topologies
- nor their business relationships with neighbors

Policy

- no Internet-wide notion of a link cost metric
- need control over where you send traffic
- and who can send traffic through you

Why SPF is not Suitable

Topology information is flooded

- high bandwidth and storage overhead
- nodes must divulge sensitive commercial information

Entire path computed locally per node

high processing overhead in a large network

Route computation minimizes some notion of total distance

• all traffic must travel on shortest paths

Why SPF is not Suitable

All nodes need common notion of link costs

• works only if policy is shared and uniform

Incompatible with commercial relationships

Why Not Distance Vector?

Advantages

- hides details of the network topology
- nodes determine only "next hop" toward the destination

Disadvantages

- route computation still entails minimization of some notion of total distance, which is difficult in an interdomain setting
- slow convergence due to reliance on counting-to-infinity to detect routing loop

Instead use path vector

easier loop detection

[after Rexford]

Path-Vector Routing

Avoid counting-to-infinity by advertising entire path

- distance vector: send distance metric per destination
- path vector: send the entire path for each destination

Loop detection:

- each node looks for its own node identifier in advertised path
- and discards paths with loops
- e.g., node 1 sees itself in the path $(\mathbf{3},\mathbf{2},\mathbf{1})$ and discards the path

Other Advantage: Flexible Policies

Each node can apply local policies

- path selection: which path to use?
- path export: which paths to advertise?

Examples

- node 2 may prefer the path "2, 3, 1" over "2, 1"
- node 1 may not want node 3 to hear of the path "1, 2"

Internet inter-AS Routing: BGP

BGP (Border Gateway Protocol) is the de facto standard for inter-AS routing

- 06/89 v.1
- + 06/90 v.2 EGP (Exterior Gateway Protocol) to BGP transition
- 10/91 v.3 BGP installed
- 07/94 v.4 de facto standard

Internet inter-AS Routing: BGP

BGP provides each AS a means to:

- use prefix-based path-vector protocol
- propagates AP reachability to all routers inside the AS
- obtains AP reachability from neighboring ASs
- determines "good" routes to APs based on reachability information and policy
- Inter-AS routing is policy driven, not load-sensitive, generally not QoS-based

When an AS advertises an AP to another AS, it is promising to forward any packets the other AS sends to the AP

• an AS can aggregate CIDR APs in its advertisement

BGP runs over TCP

Pairs of BGP routers (BGP peers) establish semipermanent TCP connections: BGP sessions

- advantage of using TCP: reliable transmission allows for incremental updates: updates only when changes occur
- disadvantage: TCP congestion control mechanism slows down route updates that could decongest link!

Failure detection:

- TCP doesn't detect lost connectivity on its own
- instead, BGP must detect failure
- + sends ${\tt KEEPALIVE}$ packets every $60~{seconds}$
- hold timer: 180 seconds

BGP sessions do not correspond to physical links, but rather business relationship

BGP Messages

BGP messages:

- OPEN: opens TCP connection to peer and authenticates sender
- UPDATE: advertises a new active path (or withdraws one no longer available)
- KEEPALIVE: keeps connection alive in the absence of UPDATEs; also acknowledges OPEN request
- NOTIFICATION: reports errors in previous message; also used to close connection

BGP Operations

Path Attributes & BGP Routes

When advertising an AP, advertisement includes BGP attributes

Two important attributes:

- AS-PATH: the path vector of ASs through which the advertisement for an AP passed through
- NEXT-HOP: the specific internal-AS router to next-hop AS (there may be multiple exits from current AS to next-hop-AS)

Path Attributes & BGP Routes

Sample BGP entry:

 destination
 NEXT-HOP
 AS-PATH

 198.32.163.0/24
 202.232.1.8
 2497 2914 3582 4600

- address range 198.32.163.0/24 is in AS 4600
- to get there, send to next hop router at address 202.232.1.8
- the path there goes through ASs 2497, 2914, 3582, in order

AS path chosen may not be the shortest AS path

Router path may be longer than AS path

Causes of BGP Routing Changes

Topology changes

- equipments going up or down
- deployment of new routers or sessions

BGP session failures

- due to equipment failures, maintenance, etc.
- or, due to congestion on the physical path

Changes in routing policy

- changes in preferences in the routes
- changes in whether the route is exported

Persistent protocol oscillation

• conflicts between policies of different ASs

[after Rexford]

BGP Session Failure

Reacting to a failure

- discard all routes learned from the neighbor
- send new updates for any routes that change
- overhead increases with # of routes
- reason why many Tier-1 ASs filter out prefixes longer than /24

[Rexford]

Routing Change: Before and After

AS1

- delete the route (1,0)
- switch to next route (1, 2, 0)
- send route (1, 2, 0) to AS3

AS3

- sees (1, 2, 0) replace (1,0)
- compares to route (2,0)
- switches to using AS2

[Rexford]