
Computer Networks

Lecture	16:	Routing:	
Link-State	Algorithm	

Link	State	Routing	
Observation:	loop	can	be	prevented	if	each	node	
knows	the	actual	network	topology	.	.	.	theoretically	

In	link-state	routing,	each	node:	
• keeps	track	of	the	state	of	its	incident	links	
• link	state	here	means	the	cost	of	the	link,	∞ =	link	down	

• floods	the	network	with	the	state	of	its	links	
• uses	Dijkstra’s	Shortest	Path	First	(SPF)	algorithm	to	
compute	a	shortest-path	tree	and	construct	the	forwarding	
table	

Link	State	Routing	
What	is	advertised:	

•	DV:	all	nodes	reachable	from	me,	
advertised	to	all	neighbors	

•	LS:	all	my	immediate	neighbors,	
advertised	to	all	nodes	
�	thus	each	node	has	the	complete	topology	

	
Example	link-state	routing	protocols:	
• Open	Shortest-Path	First	(OSPF)	
• Intermediate	System–Intermediate	System	(IS-IS)	

a

z

y
x

u

a d

c
b

u

Dijkstra’s	Shortest	Path	
First	(SPF)	Algorithm	

A	greedy	algorithm	for	solving	single-source	
shortest	path	problem	

• assume	non-negative	edge	weights	

• even	if	we’re	only	interested	in	the	path	from	s	to	a	single	
destination,	d,	we	need	to	find	the	shortest	path	from	s	to	
all	vertices	in	G	(otherwise,	we	might	have	missed	a	
shorter	path)	

•  if	the	shortest	path	from	s	to	d	passes	through	an	
intermediate	node	u,	i.e.,	P = {s, . . . , u, . . . , d},	then	
P’ = {s, . . . , u}	must	be	the	shortest	path	from	s to	u

Dijkstra’s	SPF	Algorithm	

An	iterative	algorithm	
• after	k	iterations,	knows	shortest	path	to	k	nodes	

spf:	a	list	of	nodes	whose	shortest	path	is	definitively	
known	
•  initially,	spf	= {s}	where	s	is	the	source	node	
• add	one	node	with	lowest	path	cost	to	spf	in	each	iteration	

cost[v]:	current	cost	of	path	from	source	s	to	node	v
•  initially,	cost[v]	=	c(s, v)	for	all	nodes	v	adjacent	to	s
• and	cost[v]	= ∞	for	all	other	nodes	v
• continually	update	cost[v]	as	shorter	paths	are	learned	

[Rexford]	

Dijkstra’s	SPF	Pseudocode	
SPF(startnode s)
{ // Initialize
 table = createtable(|V|); // stores spf, cost, predecessor
 table[*].spf = false; table[*].cost = INFINITY;
 pq = createpq(|E|); // empty pq
 table[s].cost = 0;
 pq.insert(0, s); // pq.insert(cost, v)
 while (!pq.isempty()) {
 v = pq.getMin();
 if (!table[v].spf) { // not on sp tree
 table[v].spf = true;

 for each u = v.neighbors() {
 newcost = weight(u, v) + table[v].cost;
 if (table[u].cost > newcost) {
 table[u].cost = newcost;
 table[u].pred = v;
 pq.insert(newcost, u);
 }
 }
 }
 }
 extract SPF from table;

}

Dijkstra’s	SPF	Example	(init,	s=b)	

a

b c d

e f

3

5

1 5

1

54

2

u spf	 cost	 pred	

a F	 ∞

b F	 0 –	

c F	 ∞

d F	 ∞

e F	 ∞

f F	 ∞

Dijkstra’s	SPF	Example	(v=f)	

a

b c d

e f

3

5

1 5

1

54

2

u spf	 cost	 pred	

a T	 3 b

b T	 0 –

c T	 4 a

d T	 6 c

e T	 8 c

f T	 9 e

Shortest	path	for	dest = f: f � e � c � a � b

Dijkstra’s	SPF:	Another	Example	

3

2

2

1

1

4

1

4

5

3

[after	Rexford]	

What’s	the	order	of	
node	addition?	In	case	
of	tie,	assume	fifo	

u

v

w

x

y

z

s

t

Shortest-Path	Tree	

Shortest-path	tree	from	u:	 Forwarding	table	at	u:	

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

destination link
v (u, v)
w (u, w)
x (u, w)
y (u, v)
s (u, w)
z (u, v)
t (u, w)

[after	Rexford]	

Dijkstra’s	SPF	Algorithm	
Time	complexity:	given	N	nodes,	
• each	iteration:	extract	minHeap	O(log|N|)
•  total	O(|N|log|N|)

Each	neighbor	of	each	node	could	also	potentially	be	
inserted	into	the	minHeap	once:	O(|E|log|N|)

Total:	O(|N|log(|N|)+|E|log(|N|)) = O(|E|log|N|)
•  |E| ≥ |N | − 1 for	a	connected	graph	

Flooding	
• a	node	sends	its	link-state	information	out	all	of	its	links	
•  the	next	node	forwards	the	link-state	information	on	all	
of	its	links	except	the	one	the	information	arrived	at	

When	to	initiate	flooding?	
• topology	change	
•  link	or	node	failure	
•  link	or	node	recovery	
• configuration	change	
•  link	cost	change	
• periodically	
•  to	refresh	the	link-state	information	(soft	states)	
•  typically	(say)	every	30	minutes	
•  corrects	for	possible	corruption	of	data	

Flooding	Link	State	 X A

C B D

[Rexford]	

A

C B D

How	to	Detect	Down		Link?	
Beaconing	
• send	periodic	“hello”	messages	in	both	directions	
• detect	a	failure	after	a	few	missed	“hellos”	
	
	
Down	link	detection	depends	on	
timeout	waiting	for	“hello”	packets	

How	often	to	send	“hello”	messages?	
Performance	trade-offs	
• detection	speed	
• overhead	on	link	bandwidth	and	CPU	
•  likelihood	of	false	detection	

[Rexford]	

“hello”	

Meanwhile,	undetected	down	link	causes	data	packets	to	
be	sent	into	a	“blackhole”	
	
	
	
	
	

Delay	in	Detecting	Down		Link	

3
2

2

1

1
4

1

4 3

[Rexford]	

5

u

v

w

x

y

z

s

t

Why	flood?	to	get	all	the	nodes	in	the	network	to	
converge	to	the	new	topology	
	
Upon	convergence,	all	nodes	will	have	consistent	
routing	information	and	can	compute	consistent	
forwarding:	
• all	nodes	have	the	same	link-state	database	
• all	nodes	forward	packets	on	shortest	paths	
•  the	next	router	on	the	path	forwards	to	the	expected	next	hop	

Flooding	Link	State	

[Rexford]	

Sources	of	Convergence	Delay	
Delay	in	detecting	network	changes	

Latency	in	link-state	flooding	results	in	
inconsistent	link-state	database	
• some	routers	know	about	failure	before	others	
• computed	shortest	paths	are	no	longer	consistent	
• can	cause	transient	forwarding	loops	

[after	Rexford]	

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4 3

routing	
loop	

u

v

w

x

y

z

s

t

u

v

w

x

y

z

s

t

What	if	Network	Doesn’t	Converge?	

Other	sources	of	convergence	delay	
•  time	complexity	of	shortest-path	computation	
•  time	complexity	of	forwarding	table	update	
	

Performance	when	network	is	not	in	convergence	
• packets	lost	due	to	blackholes	and	TTL	expiry	
•  looping	packets	consuming	resources	
• packets	reach	destination	out-of-order	

[after	Rexford]	

Ways	to	Reduce	Convergence	Delay	
Faster	link	down	detection	
• smaller	hello	timers	
•  link-layer	technologies	that	can	detect	failures	

Faster	flooding	
• flood	immediately	
• send	link-state	packets	with	high-priority	

Faster	SPF	computation	
•  faster	processors	on	the	routers	
•  incremental	Dijkstra’s	algorithm	

Faster	forwarding-table	update	
• data	structures	that	support	incremental	updates	

[after	Rexford]	

Scaling	Link-State	Routing	
Scalability-limiting	overheads	of	link-state	routing:	
•  the	need	to	flood	link-state	packets	throughout	the	network	
•  time	complexity	of	Dijkstra’s	SPF	algorithm	

Break-up	the	overheads	by	isolating	parts	of	the	
network	into	a	hierarchy	of	“areas”	

Area	0

Area	1 Area	2

Area	3 Area	4

area	
border	
router	

[after	Rexford]	

OSPF	(Open	Shortest	Path	First)	

Open:	non-proprietary	

Uses	link	state	algorithm		
• not	loop	free	due	to	delay	in	topology	propagation	
•  link	state	dissemination	by	flooding	requires	reliable	
transmission:	
•  all	nodes	must	receive	all	link-state	information	and	
•  they	must	recognize	the	latest	version	(complicated!)	

•  carried	in	OSPF	messages	directly	over	IP	(rather	than	
TCP	or	UDP)	

OSPF	(Open	Shortest	Path	First)	
Maintaining	LS	database	consistency	is	hard:	
• how	to	determine	which	LS	is	newer?	
•  challenges:	packet	loss,	out-of-order	arrival,	node	reboots	
(complicated!)	

Solutions:	
• acknowledgments	and	retransmissions	
•  lollipop	sequence	numbers	(not	trivial)	
•  time-to-live	for	each	packet	

-N N/20

upon	
reboot	

[after	Rexford]	

OSPF	(Open	Shortest	Path	First)	
Advance	features	(not	in	RIP):	
•  security:	all	OSPF	messages	are	authenticated	
(to	prevent	fake	advertisement)		

• equal-cost	multi-path	(ECMP)	routing	allowed:	
popular	for	data	center	networks	(only	one	path	in	RIP)	

•  for	each	link,	multiple	cost	metrics	for	different	TOS		
(e.g.,	satellite	link	cost	can	be	set	to	“low”	for	best	effort	
traffic,	but	set	to	“high”	for	real	time	traffic)	

•  integrated	unicast	and	multicast	support:		
• multicast	OSPF	(MOSPF)	uses	same	topology	data	base	as	OSPF	

• hierarchical	OSPF	support	in	large	domains	

Oscillation	in	SPF	
Oscillation	is	possible,	e.g.,	if	link	cost	is	computed	as	
link	load	

Example:	traffic	destined	for	A	

A	

D	

C	

B	

1 1+e

e0

e
1 1

0 0
A	

D	

C	

B	

2+e 0

00
1+e 1

A	

D	

C	

B	

0 2+e

1+e1
0 0

A	

D	

C	

B	

2+e 0

e0
1+e 1

initially	 recompute	
routing	

recompute	 recompute	

1 1 1 1 1 1
e e e

Comparison	of	LS	and	DV	Routing	
Message	complexity	
LS:	with	N	nodes,	E	links,									

O(NE)	messages	sent			
DV:	exchange	between	

neighbors	only	
	

Speed	of	Convergence	
LS:	relatively	fast	
DV:	convergence	time	varies	

•  may	have	routing	loops	
•  count-to-infinity	problem	

Robustness:	what	happens			
if	router	malfunctions?	

LS:		
•  node	can	advertise	incorrect	link	cost	
•  each	node	computes	its	own	table	

DV:	
•  node	can	advertise	incorrect	path	cost	
•  each	node’s	table	used	by	others	
(error	propagates)	

Similarities	of	LS	and	DV	Routing	
Both	are	shortest-path	based	routing	
• minimizing	cost	metric	(link	weights)	a	common	
optimization	goal	
• routers	share	a	common	view	as	to	what	makes	a	path	“good”	and	how	
to	measure	the	“goodness”	of	a	path	

Due	to	shared	goal,	commonly	used	inside	an	
organization	
• RIP	and	OSPF	are	mostly	used	for	intradomain	routing	
• e.g.,	AT&T	uses	OSPF	

But	the	Internet	is	a	“network	of	networks”	
• how	to	stitch	together	the	many	networks	when	the	
networks	may	not	share	common	goals	
• and	may	not	want	to	share	information	

