CECGH

COMPUTER NETWORKS

Lecture 16: Routing:
Link-State Algorithm

Link State Routing 6

)
What is advertised:

¢ DV: all nodes reachable from me, <
advertised to all neighbors @

¢ LS: all my immediate neighbors, @ Q
advertised to all nodes e
= thus each node has the complete topology

Example link-state routing protocols:
* Open Shortest-Path First (OSPF)
* Intermediate System—Intermediate System (IS-1S)

Link State Routing

Observation: loop can be prevented if each node
knows the actual network topology . . . theoretically

In link-state routing, each node:
- keeps track of the state of its incident links
« link state here means the cost of the link, co = link down
« floods the network with the state of its links
- uses Dijkstra’s Shortest Path First (SPF) algorithm to

compute a shortest-path tree and construct the forwarding
table

Dijkstra’s Shortest Path
First (SPF) Algorithm

A greedy algorithm for solving single-source
shortest path problem

* assume non-negative edge weights

- even if we're only interested in the path from s to a single
destination, d, we need to find the shortest path from s to
all vertices in G (otherwise, we might have missed a
shorter path)

« if the shortest path from s to d passes through an
intermediate node u, i.e., P={s,...,u, ..., d}, then
P ={s..., u} must be the shortest path from s to u

Dijkstra’s SPF Algorithm

An iterative algorithm
- after k iterations, knows shortest path to k nodes

spf: alist of nodes whose shortest path is definitively
known

« initially, spf = {s} where s is the source node

- add one node with lowest path cost to spf in each iteration

cost [v]: current cost of path from source s to node v
« initially, cost [v] = ¢(s, v) for all nodes v adjacent to s

«and cost [v] = oo forall other nodes v

- continually update cost [v] as shorter paths are learned

[Rexford]

Dijkstra’s SPF Example (init, s=b)

u | spf | cost | pred
a F o0

b| F | 0| -
c F '

d F 00

e F 00

f F 00

Dijkstra’s SPF Pseudocode

SPF (startnode s)
{ // Initialize

table = createtable(|V]);
table[*].spf = false; table[*].cost = INFINITY;

pq = createpq(|E]);
table[s].cost = 0;

pg.insert (0, s); // pg.insert(cost, v)

while (!pg.isempty()
v = pg.getMin () ;
if (!table[v].spf)

// empty pg

) |

{ // not on sp tree

table[v].spf = true;

for each u = v.neighbors () {

newcost = weight(u, v) + table[v].cost;

if (table[u].cost > newcost) {

table[u] .cost = newcost;

table[u] .pr
g .1nse (n
}
}
}

}

ed = v;

extract SPF from table;

}

// stores spf, cost, predecessor

Dijkstra’s SPF Example (v=f)

u | spf | cost | pred
a T 3 b
bl T 0 -
c T 4 a
d T 6 c
e T 8 c
f T 9 e

Y

1

- N N
[@ |y .f)
AN 4 AN 4

Shortest path fordest =f: f e+ c+a+ b

Dijkstra’s SPF: Another Example

1
3
2
4
What's the order of

node addition? In case
of tie, assume fifo

[after Rexford]

Dijkstra’s SPF Algorithm

Time complexity: given N nodes,
- each iteration: extract minHeap O(log|N|)
- total O(|N|log|N|)

Each neighbor of each node could also potentially be
inserted into the minHeap once: O(|E|log|N|)

Total: O(|NJlog(|N))-+|Ellog(|N) = O(|E]log|N)
*|E| > |N| — 1 for a connected graph

Shortest-Path Tree

Shortest-path tree from u: Forwarding table at u:

2 @, destination
3
@ Nt ’

2 s

() @/@
4 3

v <2 x =

~ N

Flooding Link State

link

(u, v)
(u, w)
(u, w)
(u, v)
(u, w)
(u,v)

(u, w)

Flooding

« a node sends its link-state information out all of its links

« the next node forwards the link-state information on all
of its links except the one the information arrived at

When to initiate flooding?
* topology change
+ link or node failure
« link or node recovery
* configuration change
« link cost change
* periodically
- to refresh the link-state information (soft states)
« typically (say) every 30 minutes
« corrects for possible corruption of data

[after Rexford]

N —
¢¢
C)—)

[Rexford]

How to Detect Down Link?

Beaconing
« send periodic “hello” messages in both directions
- detect a failure after a few missed “hellos”

e~

— “hello" =
—>

Down link detection depends on
timeout waiting for “hello” packets

How often to send “hello” messages?
Performance trade-offs

- detection speed
« overhead on link bandwidth and CPU
« likelihood of false detection

[Rexford]

Flooding Link State

Why flood? to get all the nodes in the network to
converge to the new topology

Upon convergence, all nodes will have consistent
routing information and can compute consistent
forwarding:

« all nodes have the same link-state database

» all nodes forward packets on shortest paths

« the next router on the path forwards to the expected next hop

[Rexford]

Delay in Detecting Down Link

Meanwhile, undetected down link causes data packets to
be sent into a “blackhole”

[Rexford]

Sources of Convergence Delay

Delay in detecting network changes

Latency in link-state flooding results in
inconsistent link-state database

« some routers know about failure before others
- computed shortest paths are no longer consistent
« can cause transient forwarding loops

[after Rexford]

What if Network Doesn’t Converge?

Other sources of convergence delay
« time complexity of shortest-path computation
« time complexity of forwarding table update

Performance when network is not in convergence
« packets lost due to blackholes and TTL expiry

- looping packets consuming resources

« packets reach destination out-of-order

[after Rexford]

Scaling Link-State Routing

Scalability-limiting overheads of link-state routing:
- the need to flood link-state packets throughout the network
- time complexity of Dijkstra’s SPF algorithm

Break-up the overheads by isolating parts of the
network into a hierarchy of “areas”

[after Rexford]

Ways to Reduce Convergence Delay

Faster link down detection
« smaller hello timers
« link-layer technologies that can detect failures

Faster flooding
« flood immediately
- send link-state packets with high-priority

Faster SPF computation
- faster processors on the routers
« incremental Dijkstra’s algorithm

Faster forwarding-table update
« data structures that support incremental updates

[after Rexford]

OSPF (Open Shortest Path First)

Open: non-proprietary

Uses link state algorithm

- not loop free due to delay in topology propagation

« link state dissemination by flooding requires reliable
transmission:

+ all nodes must receive all link-state information and

+ they must recognize the latest version (complicated!)

- carried in OSPF messages directly over IP (rather than
TCP or UDP)

OSPF (Open Shortest Path First)

Maintaining LS database consistency is hard:

« how to determine which LS is newer?

« challenges: packet loss, out-of-order arrival, node reboots
(complicated!)

Solutions:
- acknowledgments and retransmissions
« lollipop sequence numbers (not trivial)

« time-to-live for each packet
-N N/2

upon
reboot

[after Rexford]

Oscillation in SPF

Oscillation is possible, e.g., if link cost is computed as
link load

Example: traffic destined for A

initially recompute recompute recompute
routing

OSPF (Open Shortest Path First)

Advance features (not in RIP):

« security: all OSPF messages are authenticated
(to prevent fake advertisement)

« equal-cost multi-path (ECMP) routing allowed:
popular for data center networks (only one path in RIP)

- for each link, multiple cost metrics for different TOS
(e.g., satellite link cost can be set to “low” for best effort
traffic, but set to “high” for real time traffic)

- integrated unicast and multicast support:
» multicast OSPF (MOSPF) uses same topology data base as OSPF

« hierarchical OSPF support in large domains

Comparison of LS and DV Routing

Robustness: what happens
if router malfunctions?

Message complexity
LS: with N nodes, E links,
O(NE) messages sent

DV: exchange between
neighbors only

LS:
» node can advertise incorrect link cost
« each node computes its own table

DV:
Speed of Convergence .
« node can advertise incorrect path cost

LS: relatively fast - each node’s table used by others
DV: convergence time varies (error propagates)

+ may have routing loops

+ count-to-infinity problem

Similarities of LS and DV Routing

Both are shortest-path based routing
« minimizing cost metric (link weights) a common
optimization goal
- routers share a common view as to what makes a path "good” and how
to measure the “goodness” of a path

Due to shared goal, commonly used inside an
organization

« RIP and OSPF are mostly used for intradomain routing
ce.g., AT&T uses OSPF

But the Internet is a “network of networks”

« how to stitch together the many networks when the
networks may not share common goals

« and may not want to share information

