
Computer Networks

Lecture	14:	
Network	Security	and	

Cryptographic	Algorithms	

Security	and	the	Internet	
Original	key	design	goals	of	Internet	protocols:	
•  resiliency	
•  availability	
•  scalability	

Security	has	not	been	a	priority	until	mid	1990s	
Designed	for	simplicity:	“on”-by-default	
Unfortunately,	readily	available	zombie	machines	
Attacks	look	like	normal	traffic	
Internet’s	federated	operation	obstructs	cooperation	
for	diagnosis/mitigation	

[after	Rexford]	

Security	Attacks	
Cast	of	characters:	Alice,	Bob,	and	Trudy,	three	well-
known	characters	in	network	security	world	

Bob	and	Alice	want	to	communicate	“securely”	

Trudy	(intruder)	may	intercept,	delete,	and/or	add	
messages	
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Security	Requirements	
Attack	against	content:	
	
Data	integrity:	sender	and	receiver(s)	want	to	ensure	
that	data	is	not	altered	(in	transit,	or	afterwards)	or	if	
altered,	detectable	
	
Confidentiality/secrecy:	only	parties	involved,	the	
sender	and	the	intended	receiver(s)	should	know	of	
(the	content	of)	the	transaction	



Security	Requirements	

Attack	against	content:	
	
Authentication:	sender,	receiver(s)	want	to		
confirm	each	other’s	identity	
•  compare:	authorization	(what’s	the	difference	between	
authentication	and	authorization?)	

Non-repudiation:	involved	parties	cannot	deny	
participation	afterwards	

Security	Requirements	

Attack	against	infrastructure:	
	
Access	and	availability:	services	must	be	accessible	
and	available	to	(authorized)	users	
• destroy	hardware	(cutting	fiber)	or	software	

• modify	software	in	a	subtle	way	

•  corrupt	packets	in	transit	

• denial	of	service	(DoS)attack:	
•  crashing	the	server	
•  overwhelm	the	server	(use	up	its	resource)	

Countermeasure:	Cryptography	
The	fundamental	tool	for	achieving	network	security	

Origin:	Greek	word	for	“secret”	

Cryptographers	invent	secret	codes	(cipher)	to	try	to	
hide	messages	from	unauthorized	observers	

plaintext	 plaintext	
ciphertext	

KA

encryption	
algorithm	

decryption		
algorithm	

Alice’s		
encryption	key	

KB	

Bob’s		
decryption	key	

Two	Types	of	Encryption	Algorithms	
Symmetric	key	cryptography:	
• both	parties	share	a	secret	key	that	is	used	
for	both	encryption	and	decryption	

Public-key	cryptography:	
•  asymmetric	cryptography:	involves	use	of	two	keys:	a	public	
key	and	a	private	(secret)	key,	data	encrypted	with	the	public	
key	can	be	decrypted	by	the	private	key	and	vice	versa	

Kerckhoff’s	Principle:	“The	security	of	a	cryptosystem	
must	not	depend	on	keeping	secret	the	crypto-
algorithm.	The	security	depends	only	on	keeping	
secret	the	key.”	

–	La	cryptographie	militaire	(1883)	



Symmetric-key	Cryptography	

Both	parties	share	a	secret	key	that	is	used	for	both	
encryption	and	decryption	

Assumes	encryption	algorithm	is	known	to	both	parties	

Implies	a	secure	channel	to	distribute	key	

Was	the	only	type	of	encryption	prior	to	the	invention	
of	public-key	cryptography	in	1970’s	
Typically	more	computationally	efficient,	often	
used	in	conjunction	with	public-key	cryptography	

Example	system:	Kerberos	Authentication	Service	

Key	Escrow	

Symmetric	key	cryptography	requires	participants	
to	know	shared	secret	key	
Q:	how	to	agree	on	shared	key	in	the	first	place	
(particularly	if	the	participants	never	“met”)?	
	
Shared	key	can	be	distributed	by	key	escrow	or	
key	distribution	center	(KDC):	
•  escrow	shares	secret	keys	with	both	parties	
•  generates	a	session	key	for	each	session	
between	the	two	parties	

•  KA-KDC(KA-B, KB-KDC(A, KA-B))	sent	to	Alice	to	be	
passed	to	Bob	

Authentication	
Fundamental	trade-off:	security	vs.	convenience	

Most	secure,	least	convenient:	not	networked,	
placed	in	a	secure	locked	room	

Two	options	in	access	control:	
1.  challenge	the	users	each	
time	they	want	to	use	a	service	

2.  authenticate	them	once	and	
grant	them	tickets	to	use	several	
services	without	further	
(user-level)	challenge	for	a	
duration	of	time	(Kerberos)	

Authentication:	IP	Spoofing	
Bob	wants	Alice	to	“prove”	her	identity	to	him	

Threat	model:	
“I	am	Alice”	Alice’s		

IP	address	

Trudy	can	create	
a	packet,	“spoofing”	

Alice’s	address	

“I am Alice”Alice’s 
IP address



Authentication:	Playback	Attack	
Alice	says	“I	am	Alice”	and	sends	her	
encrypted	secret	password	to	“prove”	it	

Threat	model:	

Playback	attack:	
Trudy	records	
Alice’s	packet	and	
later	spoofs	Alice’s	
IP	address	and	
plays	back	the	
recorded	packet	
to	Bob	

OK	Alice’s		
IP	addr	

“I’m	Alice”	Alice’s		
IP	addr	

encrypted		
password	

“I’m	Alice”	Alice’s		
IP	addr	

encrypted	
password	

Authentication:	Use	of	Nonce	
Nonce	used	to	avoid	playback	attack	
Nonce:	a	number	(n)	used	only	once-in-a-lifetime	
To	prove	Alice	“live”,	Bob	sends	Alice	nonce,	n
Alice	must	return	n,	encrypted	with	shared	secret	key	

“I	am	Alice”	

n

Alice	is	live,	and	
only	Alice	knows	key	
to	encrypt	nonce,	so	
it	must	be	Alice!	

KA-B(n)

Kerberos:	an	Authentication	Service	

Kerberos	generates	a	shared	symmetric	key	for	
each	user-service	pair	
•  key	is	valid	for	only	a	limited	period	of	time	

	
Three	parties:	
1.  Authentication	Server	(AS)	
2.  Principal:	party	whose	ID	is	to	be	verified,	usually	a	

client	application	(c)	
3.  Verifier:	party	requesting	verification,	typically	servers	

(v)	for	various	services,	e.g.,	name	server,	file	server,	
print	server,	etc.	

Kerberos	Authentication	Protocol	
Authentication	Server	(AS):	
1.  keeps	a	list	of	all	clients’	passwords	(Kc’s)	
2.  shares	a	key	with	each	service	(Kv)	

Client	(c):	
1.  asks	AS	for	a	session	key	for	a	specific	server	(v)	for	a	period	

of	time,	provides	nonce	(n) 
2.  gets	back	(a)	a	session	key	(Kc,v)	with	expiration	time,	and	

nonce,	encrypted	with	client’s	password	(Kc)	and	(b)	a	
ticket	(Tc,v)	for	server	v,	encrypted	using	server’s	key	(Kv),	
Tc,v  = Kv (Kc,v , c, timeexp, …) 

3.  sends	data	(encrypted	with	session	key),	along	
with	ticket	and	authenticator	(a	timestamp/nonce	and	an	
optional	sub-session	key,	encrypted	using	session	key)	



Kerberos	Authentication	Protocol	

Server	(v):	
1.  decrypts	and	“unpacks”	Tc,v	to	obtain	Kc,v ,	makes	sure	it	

belongs	to	c	and	time	hasn’t	expired	
2.  decrypts	authenticator	(Kc,v(ts , Ksubsession)),	checks	that		

nonce,	ts,	is	within	window	(5	min)	and	has	not	been	used	
3.  decrypts	data	using	Ksubsession	(optional)	
4.  responds	with	{ts}Kc,v	(optional)	

Kerberos	Authentication	Protocol	

Inconvenience:	
•  each	service	requires	a	separate	ticket	
•  client	prompts	user	for	password	for	each	ticket	
	
More	convenient:	use	a	ticket-granting	service	
with	TGS	ticket	that	lives	for	a	“short”	period	
of	time	(8	hours)	
	
Kerberos	still	relies	on	password,	which	could	
be	“spoofed”	

One-time	Passcode	

Protection	against	password	spoofing	
• generates	a	random	number	as	passcode	
•  each	passcode	is	good	for	4	minutes	
•  login	challenge	comprises	user’s	password	
plus	the	random	number	

RSA	SecurID	tokens	
(has	a	built-in	accurate	clock)	

Public-key	Cryptography	

Symmetric	key	cryptography	requires	participants	
to	know	a	shared	secret	key	

Two	“key”	issues:		
• key	distribution:	how	to	secure	communication	if	you	
won’t	trust	a	key	distribution	center	with	your	key?	

• digital	signatures:	how	to	verify	message	arrives	intact	
from	claimed	sender	(w/o	prior	authentication)	

[after	Rexford]	



Public-key	Cryptography	
A	radically	different	approach	[Diffie-Hellman76,	RSA78]	
•  known	earlier	in	classified	community	
•  example	algorithm:	RSA	(Rivest,	Shamir,	Adelson)	

Sender	and	receiver	do	not	share	a	secret	key	
• public	key	(K+)	known	to	all	
• private	key	(K−)	known	only	to	owner	
• given	public	key,	it	should	be	impossible	to	compute	private	key	
•  ciphertext	encrypted	using	the	public	key	can	be	decrypted	using	
the	private	key	K−(K+(M)) = M,	used	for	message	integrity,	
secrecy	
• data	encrypted	with	private	key,	can	be	decrypted	with	public	key	

K+(K−(M)) = M,	used	for	digital	signature,	sender	verification,	
non-repudiation	

How	to	Obtain	Public	Key?			
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Public	Key	Distribution	
When	Alice	wants	Bob’s	public	key:	

•  Alice	obtains	CA’s	public	key	in	an	offline,	secure	manner	
(comes	with	browser	code	download,	how	secure	is	that?)	

•  Alice	gets	Bob’s	certificate	(from	Bob	or	from	elsewhere,	
doesn’t	have	to	be	secure	channel,	why	not?)	

•  Alice	decrypts	Bob’s	certificate	using	the	CA’s	public	key	to	
get	Bob’s	public	key	
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Certificate	Revocation	

CA	periodically	publishes	a	Certification	
Revocation	List	(CRL)	for	revoked	public-keys	
•  not	currently	done	
	

How	to	revoke	CA’s	public	key?	
•  currently	as	part	of	browser	updates	



Public	Key	Infrastructure	(PKI)	

A	hierarchy	of	CAs	

Relies	on	a	chain	of	trust	(speak-for	relationship)	

Examples:	
•  Verisign,	Entrust,	thawte,	Symantec,	GlobalSign,	Visa,	
DigiCert,	etc.	

•  see	Chrome�Settings�Advanced	Settings�HTTPS/
SSL�Manage	certificates...	�System	Roots	

Performance	of	Public-key	Schemes	
Like	symmetric	key	schemes	brute	force	exhaustive	
search	attack	is	theoretically	possible		
• but	keys	used	are	so	large	(e.g.,	≥ 1024bits)	
as	to	be	impractical	to	crack	
•  the	requirement	to	use	very	large	numbers	makes	public-key	
cryptography	slow	compared	to	symmetric	key	schemes		

For	example	[cryptopp.com/becnhmarks.html]:	on	a	
1.83	GHz	Intel	Core	2	running	32-bit	Windows	Vista,	
•  symmetric	AES	128-bit	key	performs	at	109	MB/s	(1.2	µs/Mbits)	
• RSA	1024-bit	key	encrypt	speed:	1.56	MB/s	(80	µs/Mbits)	
• RSA	1024-bit	key	decrypt	speed:	85.6	KB/s	(1,460	µs/Mbits)	
• RSA	decryption	is	12-19	times	slower	than	encryption,	
depending	on	key	size	

[after	Rexford]	

Symmetric	keys	are	also	more	
resistant	to	brute-force	attacks	

Common	practice,	due	to	message	
size	and	algorithm	performance:	
use	public-key	to	distribute	
symmetric	session	key	
• generate	random	symmetric	key	r
• use	public	key	encryption	to	encrypt	
and	distribute	r
• use	symmetric	key	encryption	under	r	to	encrypt	message	M

symmetric	 public	

56	bits	 384	bits	
64	bits	 512	bits	
80	bits	 768	bits	
112	bits	 1,792	bits	
128	bits	 2,304	bits	

Security	of	Public-key	Schemes	

[after	Rexford]	

Symmetric-	and	Public-key	
Key	Lengths	with	Similar	
Resistances	to	Brute-Force	
Attacks	[Schneier]	

Digital	Signatures		
Cryptographic	technique	analogous	to	hand-written	
signatures	

Sender	(Bob)	digitally	signs	document	by	encrypting	
the	document	using	his	private	key,	establishing	he	is	
the	document	owner/creator	

Verifiable,	non-forgeable:	recipient	(Alice)	can	prove	
to	anyone	that	only	Bob,	and	no	one	else	(including	
Alice),	could	have	signed	the	document	

Non-repudiation:	Alice	can	take	message	M,	and	
signature														to	court	and	proves	that	Bob	signed	M	KB

− (M )



Message	Digest	
But	it	is	computationally	expensive	to	encrypt	long	
messages	with	public-key	cryptography	

For	purposes	of	authentication	and	certification,	it	is	
sufficient	to	encrypt	a	digest	of	the	original	message	

Want:	a	fixed-length,	easy-to-compute	digital	
“fingerprint”	or	digest	to	uniquely	represent	a	message	

Solution:	apply	a	one-way	hash	
function	H(•)	to	M	to	get	a	
fixed-size	message	digest,	H(M) 
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Hash	Function	Criteria	
Required	criteria	of	the	hash	function:	
1. many-to-1	“compression”,	but	1-1	mapping	
2.  produces	fixed-size	message	digest	(fingerprint),	fast	
3.  “one-way”:	given	message	digest	h,	computationally	
infeasible	to	find	M	such	that	h = H(M) 

Checksum	would	not	be	a	good	one-way	hash	function:	

I O U 1 
0 0 . 9 
9 B O B 

49 4F 55 31 
30 30 2E 39 
39 42 D2 42 

message	 ASCII	format	

B2 C1 D2 AC 

I O U 9 
0 0 . 1 
9 B O B 

49 4F 55 39 
30 30 2E 31 
39 42 D2 42 

message	 ASCII	format	

B2 C1 D2 AC different	messages	
but	identical	checksums!	

Birthday	Paradox	

What	is	the	smallest	number	of	people	in	a	room	
for	a	better-than-even	odds	(probability	≥	0.5)	
that	two	persons	share	the	same	birthday?	
	
Assumptions:	
• 366	days	to	a	year	
• birthdays	are	independent	(no	twins)	
• birthdays	are	uniformly	distributed	(equally	likely,	in	
reality,	more	likely	9	months	after	a	holiday)	



Birthday	Paradox	

Probability	that	each	person	in	the	room	has	a	birthday	
different	from	all	the	other	persons	in	the	room:	

 !

Probability!for!the!1st !person:!1

Probability!for!the!2nd !person:! 366 −1
366

Probability!for!the!3rd !person:! 366 − 2
366

!

Probability!for!the!j3th!person:! 366 − ( j −1)
366

= 367 − j
366

Birthday	Paradox	

Assuming	independence,	the	probability	that	all	k 
people	in	the	room	have	different	birthdays	is:	
	
	
	

The	probability	that	not	“all	k	people	in	the	room	
have	different	birthdays”,	i.e.,	at	least	2	out	of	the	
k	persons	have	the	same	birthday	is:	ε =	1 – pk

 
pk = 1⋅

365
366

⋅ 364
366

⋅…⋅ 367 − k
366

Birthday	Paradox	
ε =	1 – pk 	

By	brute	force	calculations,	we	find	that:	
for	k = 22,	ε	≈	0.475,	for	k = 23,	ε	≈	0.506

So	you	only	need	23	people	in	a	room	for	2	
persons	to	share	the	same	birthday!	

More	generally,	

	

For	the	birthday	paradox,	M = 366 
! 

k ≈ 2M log 1
1− ε

for!ε = 0.5, !k ≈1.17 M

Hashing	Collision	
How	many	items	(k)	does	it	take	to	hash	two	items	
into	the	same	bucket,	with	probability	≥	0.5,	for	a	
table	of	size	M?	

Assuming:	
•  items	are	independent	
• all	possible	items	are	equally	likely		
(clearly	not	true	for	English	words,	for	example)	
• hash	function	hashes	uniformly	

For:	
M = 7, k = 4
M = 9, k = 4
M = 11, k = 4
M = 240, k = 1 226 834
M = 2n,	it	takes	on	the	order	of	√M	or	2n/2

For	SHA-1,	n	=	160,	
it	takes	280	items	to	
have	a	collision	with	
probability	≥ 0.5



Example	Hash	Function	Algorithms	
MD5	(Message	Digest):	
• MD4	developed	by	Rivest	(the	‘R’	in	RSA)	in	1990,	MD5	in	1992
•  computes	128-bit	message	digest	in	4-step	process		
•  collision	found	in	218	calculations	(< 1	sec)	in	2013
•  cryptographically	broken
	
RIPEMD-160
•  developed	by	a	team	of	European	researchers	at	RIPE	
•  produces	160-bit	hash	
•  less	popular,	less	scrutinized	
	
Speed:	MD5	>	RIPEMD-160	>	SHA-1

Example	Hash	Function	Algorithms	

SHA-1	(Secure	Hash	Algorithm):	
•  SHA	developed	by	the	NSA	(1993),	revised	SHA-1	in	1995
•  produces	160-bit	message	digest	
•  collisions	in	SHA-1	can	be	found	in	269	(not	280)	calculations	
	
SHA-2	family:	SHA-256,	SHA-512,	and	truncated	
versions	(2001)	
• SHA-256	and	SHA-512	are	structurally	identical,	differ	only	
in	rounds	(but	different	from	SHA-1)	
• produce	256-	and	512-bit	digests	respectively	
•  successful	attacks	on	reduced	round,	none	extends	to	full	
round	of	the	hash	functions	

Example	Hash	Function	Algorithms	

SHA-3:	
•  winner	of	the	NIST	hash	function	competition	2012
•  not	to	replace	SHA-2,	but	as	an	alternative,	dissimilar	
cryptographic	hash	
•  standardized	by	NIST	on	Aug.	5th,	2015
•  SHA3-224,	SHA3-256,	SHA3-384,	SHA3-512	are	the	drop-
in	replacements	for	SHA2,	with	identical	security	claims	

Other	Uses	of	One-Way	Hash	
Password	hashing:	
•  can’t	store	passwords	in	a	file	that	could	be	read	
• how	to	compare	input	passwords	to	stored	passwords?	
•  solution:	hash(input)	==	hash(stored)	?	

• often	“salt”	is	used:	hash(input||salt)	
•  known	as	hash	message	authentication	code	(HMAC)	

•  can	also	be	used	to	generate	a	different	password	for	
each	web	account	from	one	password	
• don’t	use	MD5	or	SHA-1
	

Integrity	of	downloaded	file:	
•  file	tagged	with	hash(data)	
•  users	verify	that		hash(downloaded)	==	hash(data)	

[after	Rexford]	


