2 1(’:s
4 COMPUTER. NETWORKS
Lecture 14:
Network Security and
Cryptographic Algorithms
Security Attacks

Cast of characters: Alice, Bob, and Trudy, three well-
known characters in network security world

Bob and Alice want to communicate “securely”

Trudy (intruder) may intercept, delete, and/or add
messages

Alice gg@ data, control am BOD
. (4 channel messages ch
k o
5 \]
secure) secure
data = — . > data
receiver

sender](.
~
Trudy @
D

Security and the Internet

Original key design goals of Internet protocols:

« resiliency

- availability

- scalability

Security has not been a priority until mid 1990s
Designed for simplicity: “on”-by-default
Unfortunately, readily available zombie machines
Attacks look like normal traffic

Internet’s federated operation obstructs cooperation
for diagnosis/mitigation

[after Rexford]

Security Requirements

Attack against content:

Data integrity: sender and receiver(s) want to ensure
that data is not altered (in transit, or afterwards) or if
altered, detectable

Confidentiality/secrecy: only parties involved, the
sender and the intended receiver(s) should know of
(the content of) the transaction

Security Requirements

Attack against content:

Authentication: sender, receiver(s) want to
confirm each other’s identity

 compare: authorization (what's the difference between
authentication and authorization?)

Non-repudiation: involved parties cannot deny
participation afterwards

Countermeasure: Cryptography

The fundamental tool for achieving network security
Origin: Greek word for “secret”

Cryptographers invent secret codes (cipher) to try to
hide messages from unauthorized observers

Alice’s Bob’s

é&z’ encryption key e= decryption ke
52 | | cks
laint “t ciphertext | -fé%f‘t .
plaintext | encryption decryption | Plalntex

algorithm ‘\} f/' algorithm
% o
A
s

Security Requirements

Attack against infrastructure:

Access and availability: services must be accessible
and available to (authorized) users

- destroy hardware (cutting fiber) or software

 modify software in a subtle way

- corrupt packets in transit

» denial of service (DoS)attack:
» crashing the server
« overwhelm the server (use up its resource)

Two Types of Encryption Algorithms
Symmetric key cryptography:

- both parties share a secret key that is used
for both encryption and decryption

Public-key cryptography:

- asymmetric cryptography: involves use of two keys: a public
key and a private (secret) key, data encrypted with the public
key can be decrypted by the private key and vice versa

Kerckhoff's Principle: “The security of a cryptosystem
must not depend on keeping secret the crypto-
algorithm. The security depends only on keeping
secret the key.”

— La cryptographie militaire (1883)

Symmetric-key Cryptography Key Escrow

Symmetric key cryptography requires participants

Both parties share a secret key that is used for both
to know shared secret key

encryption and decryption
Q: how to agree on shared key in the first place

Assumes encryption algorithm is known to both parties . : .
v yPH gort I W part! (particularly if the participants never “*met”)?

Implies a secure channel to distribute key

Was the only type of encryption prior to the invention Shared key can be distributed by key escrow or
of public-key cryptography in 1970’s key distribution center (KDC):

Typically more computationally efficient, often * escrow shares secret keys with both parties

used in conjunction with public-key cryptography " generates a session key for each session

between the two parties
Example system: Kerberos Authentication Service ¢ Kyxpce(K o Ky pe(A, K) sent to Alice to be

passed to Bob

Authentication Authentication: IP Spoofing

Fundamental trade-off: security vs. convenience Bob wants Alice to “prove” her identity to him

Most secure, least convenient: not networked, —

& Al “lam Alice” .
placed in a secure locked room é%f* 1P address =
2. authenticate them once and

Alice’s |y, P
IP address LS
grant them tickets to use several

services without further Trudy can create
(user-level) challenge for a a packet, “spoofing”
duration of time (Kerberos) Alice’s address

Threat model:

Two options in access control:

1. challenge the users each
time they want to use a service

Authentication: Playback Attack

Alice says "l am Alice” and sends her
encrypted secret password to “prove” it

Threat model:

-
2

@@} CJ{:"{’ Playback attack:
5

ey Trudy records

&9 .

o Alice’s packet and
later spoofs Alice’s
IP address and
plays back the
recorded packet
to Bob

Alice’s | encrypted
IP addr | password

“I'm Alice”

Kerberos: an Authentication Service

Kerberos generates a shared symmetric key for
each user-service pair
« key is valid for only a limited period of time

Three parties:

1. Authentication Server (AS)

2. Principal: party whose ID is to be verified, usually a
client application (c)

3. Verifier: party requesting verification, typically servers
(v) for various services, e.g., name server, file server,
print server, etc.

Authentication: Use of Nonce

Nonce used to avoid playback attack

Nonce: a number (n) used only once-in-a-lifetime

To prove Alice “live”, Bob sends Alice nonce, n

Alice must return n, encrypted with shared secret key

"l am Alice” ;;;-e%,,_
) .-— 18-
Eﬁ,‘;‘ n &9
-
K, 5(n) Alice is live, and

s only Alice knows key
>
to encrypt nonce, so
it must be Alice!

Kerberos Authentication Protocol

Authentication Server (AS):
1. keeps a list of all clients’ passwords (K,'s)
2. shares a key with each service (K)

Client (c):

1. asks AS for a session key for a specific server (v) for a period
of time, provides nonce (n)

2. gets back (a) a session key (X) with expiration time, and
nonce, encrypted with client’s password (K,.) and (b) a
ticket (7..,) for server v, encrypted using server’s key (K,),
T., =K, (l\ , €, timegy, ...)

3. sends data (encrypted with session key), along
with ticket and authenticator (a timestamp/nonce and an
optional sub-session key, encrypted using session key)

Kerberos Authentication Protocol

Server (v):

1. decrypts and “unpacks” 7, to obtain X, makes sure it
belongs to ¢ and time hasn’t expired

2. decrypts authenticator (K (7,, K cqi0n))s Checks that
nonce, ¢, is within window (5 min) and has not been used

3. decrypts data using K| (optional)

ubsession

4. responds with {#} K, (optional)

One-time Passcode

Protection against password spoofing

« generates a random number as passcode

- each passcode is good for 4 minutes

« login challenge comprises user’s password
plus the random number

RSA SecurlD tokens
(has a built-in accurate clock)

Kerberos Authentication Protocol

Inconvenience:
- each service requires a separate ticket
« client prompts user for password for each ticket

More convenient: use a ticket-granting service
with TGS ticket that lives for a “short” period
of time (8 hours)

Kerberos still relies on password, which could
be “spoofed”

Public-key Cryptography

Symmetric key cryptography requires participants
to know a shared secret key
Two “key"” issues:

* key distribution: how to secure communication if you
won't trust a key distribution center with your key?

« digital signatures: how to verify message arrives intact
from claimed sender (w/o prior authentication)

[after Rexford]

Public-key Cryptography

A radically different approach [Diffie-Hellman76, RSA78]
« known earlier in classified community
- example algorithm: RSA (Rivest, Shamir, Adelson)

Sender and receiver do not share a secret key

- public key (K™) known to all

- private key (K™) known only to owner

- given public key, it should be impossible to compute private key

- ciphertext encrypted using the public key can be decrypted using
the private key K (K" (M)) = M, used for message integrity,
secrecy

- data encrypted with private key, can be decrypted with public key
K (K~ (M)) = M, used for digital signature, sender verification,
non-repudiation

Public Key Distribution

When Alice wants Bob's public key:

« Alice obtains CA's public key in an offline, secure manner
(comes with browser code download, how secure is that?)

« Alice gets Bob's certificate (from Bob or from elsewhere,
doesn’t have to be secure channel, why not?)

« Alice decrypts Bob's certificate using the CA’s public key to

get Bob's public key -
q digital @= Bob's
»| signature — public
(decrypt) K, key
4
CAs i
public key : K,

How to Obtain Public Key?

Certificates and Certification Authorities (CAs)

Bob's

public key ‘

K digital =
oy signature |———,

: encrypt

.,’.‘ m (yep)

...... v i _ CAs: = certificate for
oy private key Bob's public key,
@ Bob's K. (K,)

identifying '
information

CAis in effect asserting that “this is Bob's public key”

Certificate Revocation

CA periodically publishes a Certification
Revocation List (CRL) for revoked public-keys
« not currently done

How to revoke CA’s public key?
« currently as part of browser updates

Public Key Infrastructure (PKI)

A hierarchy of CAs
Relies on a chain of trust (speak-for relationship)

Examples:

- Verisign, Entrust, thawte, Symantec, GlobalSign, Visa,
DigiCert, etc.

- see Chrome—Settings—Advanced Settings—=HTTPS/
SSL—Manage certificates... =System Roots

Security of Public-key Schemes

Symmetric keys are also more Symmetric- and Public-key
. f K Key Lengths with Similar
resistant to brute-force attacks Resistances to Brute-Force

Attacks [Schneier]
Common practice, due to message

symmetric public
size and algorithm performance: S6bits 384 bits
use public-key to distribute 64bits 512 bits
symmetric session key 80 bits 768 bits
« generate random symmetric key r 112bits 1,792 bits
- use public key encryption to encrypt 128 bits 2,304 bits

and distribute r
« use symmetric key encryption under r to encrypt message M

[after Rexford]

Performance of Public-key Schemes

Like symmetric key schemes brute force exhaustive
search attack is theoretically possible

« but keys used are so large (e.g., > 1024bits)
as to be impractical to crack

« the requirement to use very large numbers makes public-key
cryptography slow compared to symmetric key schemes

For example [cryptopp.com/becnhmarks.html]: on a

1.83 GHz Intel Core 2 running 32-bit Windows Vista,

« symmetric AES 128-bit key performs at 109 MB/s (1.2 us/Mbits)

« RSA 1024-bit key encrypt speed: 1.56 MB/s (80 us/Mbits)

« RSA 1024-bit key decrypt speed: 85.6 KB/s (1,460 us/Mbits)

* RSA decryption is 12-19 times slower than encryption,
depending on key size

[after Rexford]

Digital Signatures

Cryptographic technique analogous to hand-written
signatures

Sender (Bob) digitally signs document by encrypting
the document using his private key, establishing he is
the document owner/creator

Verifiable, non-forgeable: recipient (Alice) can prove
to anyone that only Bob, and no one else (including
Alice), could have signed the document

Non-repudiation: Alice can take message M, and
signature K,(M)to court and proves that Bob signed M

Message Digest Digital Signature = Signed Message Digest

Butitis computationally expensive to encrypt |0ng Bob sends digitally signed message: Alice verifies signature and integrity
messages with public-key cryptography of digitally signed message:
. . o large
For purposes of authen’Flcatlon and ce_rt.lﬁcatlon, itis message _.Izsgcgzih encrgptedt
sufficient to encrypt a digest of the original message mjf,(/'gjs
. , digital -

Want: a fixed-length, easy-to-compute digital prBif:iZ & | signatore message , }
“fingerprint” or digest to uniquely represent a message key K, (e”ciypt) fl pBuobtl’iz e ,digi:a'

" signature

) key le’

. H(-): hash (d t)
Solut_lon: apply a one-way hash large | P ﬁgr?cti(a; ecryp
function H(-) to M to get a message ,1;’(-):th_ash e — Y i
fixed-size message digest, H(M) M oreon ! K00

1 e

v same

H(M)
Hash Function Criteria -

Birthday Paradox
Required criteria of the hash function:
1. many-to-1 “compression”, but 1-1 mapping What is the smallest number of people in a room
2. produces fixed-size message digest (fingerprint), fast for a better-than-even odds (probability > 0.5)
3. “one-way": given message digest 4, computationally that two persons share the same birthday?
infeasible to find M such that & = H(M)
_ Assumptions:

Checksum would not be a good one-way hash function: 366 days to a year
message ASCll format message ASCIl format « birthdays are independent (no twins)
LOU L 49 dF 55 21 L OUJ3 49 4F 55 39 « birthdays are uniformly distributed (equally likely, in
00 . 9 30 30 2E 39 00 . 1 30 30 2E 31 . . .
5B OB 39 42 D2 42 5B OB 39 42 D2 42 reality, more likely 9 months after a holiday)

B2 Cl D2 AC < different messages — B2 C1 D2 AC
but identical checksums!

Birthday Paradox

Probability that each person in the room has a birthday
different from all the other persons in the room:

Probability for the 1** person: 1

366 -1
366

366 -2
366

Probability for the 2™ person:

Probability for the 3 person:

366—(j—1) 367—j
366 366

Probability for the j-th person:

Birthday Paradox

e=1-p;

By brute force calculations, we find that:
fork =22, e 20475, for k = 23, ¢ = 0.506

So you only need 23 people in a room for 2
persons to share the same birthday!

More generally, k = "ZMloglL
—€

fore=05k= 1.17dM
For the birthday paradox, M = 366

Birthday Paradox

Assuming independence, the probability that all
people in the room have different birthdays is:
_1. 365 364 367-k

Pe=1"366 366 T 366

The probability that not “all k people in the room
have different birthdays”, i.e., at least 2 out of the
k persons have the same birthday is: ¢ =1 —p,

Hashing Collision

How many items (k) does it take to hash two items
into the same bucket, with probability > 0.5, for a
table of size M?

Assuming:
- items are independent
« all possible items are equally likely
(clearly not true for English words, for example)
« hash function hashes uniformly

For: For SHA-1, n = 160,
M=T,k=4 it takes 2% items to
M=9,k=4 have a collision with
M=11,k=4 probability > 0.5
M=2%Fk=1226834
M = 2", it takes on the order of VM or 22

Example Hash Function Algorithms

MDS5 (Message Digest):

- MD4 developed by Rivest (the 'R’ in RSA) in 1990, MD5 in 1992
- computes 128-bit message digest in 4-step process

« collision found in 2!8 calculations (< 1 sec) in 2013

- cryptographically broken

RIPEMD-160

« developed by a team of European researchers at RIPE
« produces 160-bit hash

« less popular, less scrutinized

Speed: MD5 > RIPEMD-160 > SHA-1

Example Hash Function Algorithms

SHA-3:

« winner of the NIST hash function competition 2012

+ not to replace SHA-2, but as an alternative, dissimilar
cryptographic hash

« standardized by NIST on Aug. 5th, 2015

« SHA3-224, SHA3-256, SHA3-384, SHA3-512 are the drop-
in replacements for SHA2, with identical security claims

Example Hash Function Algorithms

SHA-1 (Secure Hash Algorithm):

« SHA developed by the NSA (1993), revised SHA-1 in 1995

« produces 160-bit message digest

« collisions in SHA-1 can be found in 2% (not 28%) calculations

SHA-2 family: SHA-256, SHA-512, and truncated

versions (2001)

+ SHA-256 and SHA-512 are structurally identical, differ only
in rounds (but different from SHA-1)

« produce 256- and 512-bit digests respectively

» successful attacks on reduced round, none extends to full
round of the hash functions

Other Uses of One-Way Hash

Password hashing:

« can't store passwords in a file that could be read

« how to compare input passwords to stored passwords?
« solution: hash(input) == hash(stored) ?

- often “salt” is used: hash(input||salt)
+ known as hash message authentication code (HMAC)

- can also be used to generate a different password for
each web account from one password

« don't use MD5 or SHA-1

Integrity of downloaded file:
- file tagged with hash(data)
« users verify that hash(downloaded) == hash(data)

[after Rexford]

