
Computer Networks

Lecture	11:	PA2	Walk-through	

Lab	3:	imgdb
Image	database	server	

Communicate	with	netimg	client	over	an	image	
socket	

Default	images	folder	under	working	directory	

All	instances	of	imgdb	share	the	same	images	folder	

Each	instance	serves	up	only	images	whose	names	are	
within	the	instance’s	ID	range,	(beginID, endID]

% imgdb [-b <beginID> -e <endID>]

ID	
Computed	from	SHA1	of	image	name:	

unsigned char ID = 0;
unsigned char md[SHA1_MDLEN]; // message digest

SHA1((unsigned char *) fname, strlen(fname), md);

for (i = 0; i < SHA1_MDLEN; i++) {
 ID ^= md[i]; // XOR all the unsigned chars,
 // assuming 8 bit ID
}

Folding	up	the	160-bit	SHA1	value	increases	the	
probability	of	the	IDs	colliding	

On	Windows	you	need	to	install	and	link	with	the	openssl	
library	(see	Building	Socket	Programs	course	note)	

Bloom	Filter	
When	an	image	is	loaded,	it’s	also	entered	into	a	64-bit	
Bloom	Filter	(bf)	

Three	hash	functions:	

• each	computes	an	index	in	[0,63]	from	a	random	offset	of	the	
image	name’s	SHA1	value	

• bf	bit	at	the	computed	index	is	set	to	1

Lab3
Task	1:	become	familiar	with	modulo	arithmetic,	
compute	ID_inrange(ID, begin, end)	and	
populate	the	Bloom	Filter	(bf)	on	image	addition	(2	
lines)	

Task	2:	become	familiar	with	SHA1	computation,	ID	
generation,	and	Bloom	Filter	operation	(8	lines)	

Be	sure	you	really	understand	what	you’re	doing,	not	
just	filling	in	the	blanks	

Assumptions	
ID	is	8	bits	

Image	database	can	hold	only	IMGDB_MAXDBSIZE	
number	of	images	

Once	loaded	or	cached,	images	are	never	removed	

Only	one	image	is	read	into	memory	at	a	time	

Lab	4:	dhtn
The	first	instance	assumes	the	whole	ID	ring	

Subsequent	instances	join	the	DHT	by	contacting	the	
provided	node:	

% dhtn [-p <node>:<port> -I <ID>]

Each	node’s	ID	is	computed	from	its	address	and	port	
number	and	is	on	the	same	space	as	the	image	IDs	

Node	ID	can	be	statically	assigned	using	the	-I	option	
• useful	for	testing	ID	collision	
• and	for	testing	node	addition	order	and	scenarios	

dhtn

As	with	PA1,	the	DHT	socket	used	for	inter-node	
communication	is	different	from	the	image	socket	
used	for	client	communication	
	
Use	the	node	IDs	to	differentiate	nodes	

DHTM	Packet	Formats	
vers type ttl

rsvd ID port

addr

rsvd ID port

addr

dhtmsg_t

dhtwlcm_t

Defined	in	dhtn.h
dhtm_type:	DHTM_JOIN	�	dhtm_node:	joining	node	
dhtm_type:	DHTM_REID	�	dhtm_node:	not	used	
dhtm_type:	DHTM_WLCM	�	dhtm_node:	successor	node	

dhtm_pred:	predecessor	node
dhtm_type:	DHTM_RDRT	�	dhtm_node:	new	successor	

Join	Handling	
DHTM_JOIN:	
• handlepkt()	usually	closes	DHT	socket	immediately	upon	
receiving	a	packet,	
• but	if	packet	is	a	join	packet,	it	passes	the	DHT	socket	to	
handlejoin()
• handlejoin()	must	close	DHT	socket	as	soon	as	possible,	
to	avoid	deadlock	

Join	Handling:	Case	2	
A	correct	spot	has	been	found	on	the	identifier	ring	for	
the	joining	node
•  for	example:	N26’s	join	request	at	N32
• N32	accepts	N26	as	its	new	predecessor	
• N32	sends	DHTM_WLCM	to	N26	with	

N32	in	dhtm_node,	and	N21	in	dhtm_pred
• N32	and	N26	both	call	imgdb::reloaddb()	
to	reload	their	databases	and	Bloom	filters	

[Stoica+’03]	

Join	Handling:	Case	3	
When	the	sender’s	successor	has	become	inconsistent:	
•  for	example,	after N26	joins	the	network,	let	N24	joins	at	N21
• N21	still	thinks	that	N32	is	its	successor,	so	it	forwards	

N24’s	join	request	to	N32	with	DHTM_ATLOC	set	
•  DHTM_ATLOC:	you’re	my	successor	
and	this	ID	should	be	in	your	range	

• N32	sends	back	a	DHTM_REDRT	to	N21	
with	N26	in	dhtm_node
• N21	corrects	its	successor	info	
(finger[0])	and	forwards	
N24’s	join	request	to	N26

[Stoica+’03]	

Join	Outcome	at	the	Joining	Node	
DHTM_REID:	ID	collision	(Case	1),	reID()	and	
join()	again	

DTHM_WLCM:	store	successor	in	fingers[DHTN_SUCC]	
and	predecessor	in	fingers[DHTN_PRED]	
(DHTN_SUCC	==	0	&	DHTN_PRED	==	DHTN_FINGERS)	

Lab	4
All	dhtn’s	may	share	the	same	images	folder,	but	
each	may	serve	up	only	images	within	its	purview	

We	don’t	implement	image	search	in	Lab4

Entering	‘p’	prints	out	successor	and	predecessor	info	
• newly	joined	node	must	have	both	correct	
• all	nodes	must	have	predecessor	info	correct	at	all	times	(can	
be	used	to	reconstruct	the	ring)	
•  successor	info	may	become	inconsistent	after	node	additions	
•  (‘p’	doesn’t	work	on	Windows)	

More	Assumptions	
No	node	departure	

Node	join	does	not	fail	

No	concurrent	joins	

Single	message	per	connection,	
except	for	node	redirect	

PA2:	Search	with	Finger	Table	
Initialize	all	fingers	to	point	to	self

May	be	useful	to	keep	a	lookup	table	fIDs[]	at	each	
node	to	keep	the	ID+2i	values,	0 ≤ i < n,	n = 8	in	PA2

Example:	let	current	node	ID	be	23
• fIDs[] = { 24, 25, 27, 31, 39, 55, 87, 151 }

N23

N40

N43N60

N23’s	finger	table:	
0 24 (successor) 40
1 25 40
2 27 40
3 31 40
4 39 40
5 55 60
6 87 23
7 151 23
8 predecessor 60

Join/Search	Example	
Let	targetID	(joining	node	or	
image	ID)	42	arrives	at	node	23

Which	node	shall	it	be	forwarded	to?	

Find	the	largest	index	j for	which	
fIDs[j]	is	in	the	range	
(nodeID, targetID]

In	this	example,	nodeID = 23,	targetID = 42;�
j = 4 ⇒ fIDs[j] = 39 ∈ (23, 42]
forward	to	fingers[j] = 40

N40 further forwards to N43,	where	ID 42	“belongs”	
Forwarding	to	N60	would	have	overshot	

0 24 (successor) 40
1 25 40
2 27 40
3 31 40
4 39 40
5 55 60
6 87 23
7 151 23
8 predecessor 60

index		fIDs[]						fingers[]	

Join/Search	Example	
Another	example,	nodeID = 23,	
targetID = 44; j = 4�
⇒ fIDs[j] = 39 ∈ (23, 44]
forward	to	fingers[j] = 40

Summary:	fingers[j]	contains	the	node	that	
immediately	precedes	targetID	in	the	finger	table	
(though	not	necessarily	immediate	precedent	of	
targetID	on	the	ring,	e.g.,	targetID = 44	is	
forwarded	to	N40	not	N43)	

N23

N40

N43N60

Join/Search	Example	
If	targetID	is	expected	to	be	in	
forwarded	node’s	range,	set	
DHTM_ATLOC	

For	example:	nodeID = 23,	
targetID = 56; j = 5 �
⇒ fIDs[j] = 55 ∈ (23, 56]�
forward	to	fingers[j] = 	60	with	DHTM_ATLOC	set	

If	N58	has	joined,	N60	returns	DHTM_RDRT

If	DHTM_RDRT	received,	correct	fingers[j]	(not	just	
correcting	successor	as	in	Lab4)

0 24 (successor) 40
1 25 40
2 27 40
3 31 40
4 39 40
5 55 60
6 87 23
7 151 23
8 predecessor 60

Updating	the	Finger	Table	
If	DHTM_RDRT	received,	correct	fingers[j]	

Upon	DHTM_WLCM,	set	fingers[DHTN_SUCC]	and	
fingers[DHTN_PRED]

Every	time	a	finger	table	entry	(at	index	j)	is	modified,	
call	fixup(j)	and/or	fixdn(j)

fixup()	and	fixdn()
fixup(j):	
for	each	k,	j < k <	DHTN_FINGERS
if	fIDs[k]	∈ (nodeID, fingers[j]’s ID],	
update fingers[k]	with	fingers[j]	
	otherwise	stop	the	walk	
	

fixdn(j):	
for	each	k,	j > k ≥	0
if	fingers[j]’s	ID	∈ [fIDs[k], finger[k]’s ID],	
update fingers[k]	with	fingers[j],	stop	the	
walk	if	fIDs[k] == fingers[k]

inclusive!	

0
1
2
3
4
5
6
7
8

j

down	

up	

DHT	Search	
When	a	client	or	another	node	queries	for	an	image,	
first	check	local	database	and	cache	(Bloom	filter)	for	
image	

If	found,	send	image	to	client	or	send	DHTM_RPLY	to	
search	originator	node	

If	not	found	and	image	is	in	node’s	ID	range,	replies	
with	DHTM_MISS

If	not	found	and	image	is	not	in	node’s	ID	range,	sends	
out	a	DHTM_SRCH	packet	

DHTM	Search	Packet	Format	
vers type ttl

rsvd ID port

addr

imgID
name[NETIMG_MAXFNAME]

dhtmsg_t

dhtsrch_t

Defined	in	dhtn.h
dhtm_type:	DHTM_SRCH	�	dhtm_node:	originator	node	
dhtm_type:	DHTM_RPLY	�	dhtm_node:	not	used	
dhtm_type:	DHTM_MISS	�	dhtm_node:	not	used	

Search	Forwarding	
DHTM_SRCH	packets	are	forwarded	like	DHTM_JOINs	
•  including	use	of	DHTM_ATLOC	and	DHTM_RDRT	to	fix	the	
finger	table	

When	you	send	back	a	DHTM_RPLY	or	DHTM_MISS	
packet,	you	don’t	forward	the	search	packet	further	and	
consequently	do	not	need	to	fix	any	existing	finger	table	
inconsistencies	

Unlike	PA1,	DHTM_RPLY	doesn’t	transfer	an	image,	it’s	
only	a	“permission”	to	load	the	search	originator’s	
database	and	cache	(Bloom	filter)	with	the	queried	
image	name	

Even	More	Assumptions	
Once	loaded	or	cached,	images	are	never	removed,	
but	when	the	ID	range	of	a	node	changes,	its	whole	
image	database	is	reloaded,	its	cache	flushed,	and	its	
Bloom	filter	reinitialized	

Only	one	outstanding	search	request	per	dhtdb

