
Computer Networks


Lecture	7:	IP	Fragmentation,	

IPv6,	NAT	

IP	Fragmentation	&	Reassembly	

Network	links	have	MTU	(maximum	transmission	unit)	–	

the	largest	possible	link-level	frame	

•  different	link	types,	different	MTUs	

•  not	including	frame	header/trailer	

•  but	including	any	and	all	headers	
above	the	link	layer	

Large	IP	datagrams	are		split	up	

(“fragmented”)	in	the	network	

•  each	with	its	own	IP	header	

•  fragments	are	“reassembled”	

only	at	final	destination	(why?)	

•  IP	header	bits	used	to	identify	and	order	related	fragments	

fragmentation:		

in:	one	large	datagram	

out:	3	smaller	datagrams	

reassembly	

IPv4	Packet	Header	Format	

version	
hdr	len	

(bytes)	

Type	of	Service	

(TOS)	
Total	length	(bytes)	

Identification	
3-bit	
flags	 13-bit	Fragment	Offset	

Time	to		

Live	(TTL)	
Protocol	 Header	Checksum	

Source	IP	Address	

Destination	IP	Address	

Options	(if	any)	

Payload	(e.g.,	TCP/UDP	packet,	max	size?)	

20-byte	
Header	

usually	IPv4

upper	layer	protocol	

to	deliver	payload	to,	

e.g.,	ICMP	(1),	UDP	(17),	
TCP	(6)	

e.g.	timestamp,	

record	route,	

source	route	

4	bits	 4	bits	 8	bits	 16	bits	

IP	fragmentation	use	

IP	Fragmentation	and	Reassembly	

ID	

=x
offset	

=0
fragflag	

=0
length	

=4000

ID	

=x
offset	

=0
fragflag	

=MF	

length	

=1500

ID	

=x
offset	

=185
fragflag	

=MF	

length	

=1500

ID	

=x
offset	

=370
fragflag	

=0
length	

=1040

Example:	4000-byte	datagram	

MTU	=	1500	bytes	

1480	bytes	in		
data	field	

offset	=
1480/8 

unique	per	datagram	

per	source	

One	large	datagram	

becomes	several	

smaller	datagrams	

• all	but	the	last	fragments	

must	be	in	multiple	of	8	
bytes	

• offsets	are	specified	in	
unit	of	8-byte	chunks	
•  IP	header	=	20	bytes	(1	
header	becomes	3	in	this	
example)	



Fragmentation	Considered	Harmful	

Reason	1:	lose	1	fragment,	lose	whole	packet:	

•  kernel	has	limited	buffer	space	

•  but	IP	doesn’t	know	number	of	fragments	per	packet	

For	example:		

•  sender	sends	two	packets,	L	and	S
•  L	is	fragmented	into	8	fragments	

•  S	is	fragmented	into	2	fragments	

•  receiver	has	8	buffer	slots	

•  suppose	fragments	arrive	in	the	following	order:	

L1, L2, L3, L4, L5, L6, L7, S1, L8, S2

•  receiver’s	buffer	fills	up	after	S1,	both	packets	thrown	

away	when	reassembly	timer	times	out	

Fragmentation	Considered	Harmful	

Reason	2:	inefficient	transmission	

Example:	

• 10	KB	of	data	
•  sent	as	1024	byte	TCP	segments	

• uses	10	IP	packets,	each	1064	bytes	
(TCP/IP	headers,	each	20	bytes)	
•  suppose	MTU	is	1006	bytes	
• each	TCP	segment	is	fragmented	into	2	IP	packets,	
of	1,004	bytes	and	80	bytes	respectively	
• ends	up	sending	20	packets	
•  If	TCP	had	sent	960-byte	segments,	only	need	to	

send	11	packets	

Analysis:	

•  IP	doesn’t	have	control	over	number	of	fragments	

• TCP	can	do	buffer	management	better	because	

it	has	more	information	

	

Alternatives	to	fragmentation:	

•  send	only	small	datagrams	(why	not?)	

•  do	path	MTU	discovery	and	let	TCP	send	

the	appropriate	segment	sizes	

•  set	DF	flag	
•  router	returns	ICMP	error	message	(type	3,	code	4)	
if	fragmentation	becomes	necessary	

•  IPv6	enforces	minimum	MTU	of	1280	bytes	(576	bytes	
for	IPv4),	fragmentation	requires	fragmentation	header	

Fragmentation	Considered	Harmful	 IPv6
Initial	motivation: 
32-bit	address	space	
exhaustion,	increases	

address	size		

	

Additional	motivation:	

•  efficient	header	format	helps	speed	processing/forwarding 
•  header	length:	removed,	use	fixed-length	40-byte	header	
(0.07%	overhead	even	for	576-byte	packets)	
•  header	checksum:	removed	to	reduce	processing	time	at	each	hop	

•  options:	allowed,	but	outside	of	header,	indicated	by	“next	header”	

field	

40-byte	
Header	



IPv4	Packet	Header	Format	

version	
hdr	len	

(bytes)	

Type	of	Service	

(TOS)	
Total	length	(bytes)	

Identification	
3-bit	
flags	 13-bit	Fragment	Offset	

Time	to		

Live	(TTL)	
Protocol	 Header	Checksum	

Source	IP	Address	

Destination	IP	Address	

Options	(if	any)	

Payload	(e.g.,	TCP/UDP	packet,	max	size?)	

20-byte	
Header	

usually	IPv4

upper	layer	protocol	

to	deliver	payload	to,	

e.g.,	ICMP	(1),	UDP	(17),	
TCP	(6)	

e.g.	timestamp,	

record	route,	

source	route	

4	bits	 4	bits	 8	bits	 16	bits	

✗ ✗ ✗

✗

✗

✗

IPv6
Additional	motivation:	

•  header	changes	to	facilitate	Quality	of	Service	(QoS)	

•  priority:		set	priority	amongst	datagrams	in	flow	(ToS	bit)	

•  flow	label:	identify	datagrams	in	the	same	“flow”	(concept	of	“flow”		

not	well	defined,	originally	these	were	“reserved”	bits)	

Next	header	identifies	“upper	layer”	protocol	or	

IPv6	options:	
•  hop-by-hop	option,	destination	
option,	routing,	fragmentation,	

authentication,	encryption	
40-byte	
Header	

IPv6	Address	
What	does	an	IPv6	address	look	like?	
•  128	bits	written	as	8 16-bit	integers	separated	by	’:’	
•  each	16-bit	integer	is	represented	by	4	hex	digits	

Example:	

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 
	

Abbreviations:	

actual	-	1080:0000:0000:0000:0008:0800:200C:417A	

skip	leading	0’s	-	1080:0:0:0:8:800:200C:417A 
double	’::’	-	1080::8:800:200C:417A	

but	not	::BA98:7654::	

IPv6	Address	Format	

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 
 
 
Interface	identifier:	MAC	address	(globally	unique!)	

• MAC	addresses	are	48	bits:	add	FFFE	between	the	2	halves	
• loopback:	::1/128	(only	1	address,	not	a	whole	class	A	

block	(127/8)	as	in	IPv4)	
	

Subnet	prefix:	automatically	obtained	from	router	

•  /32	assigned	to	Internet	Registries	(ARIN/RIPE/APNIC),	

which	then	dish	out	smaller	address	blocks	

Subnet	prefix	(64	bits)		 Interface	identifier	(64	bits)		



IPv6	Special	Subnet	Prefixes	
Link-local	prefix:	FE80::/10	(flush	left),	not	
forwarded	by	router	

Unique	Local	Addresses	(ULA):	FC00::/7	routed	
within	a	set	of	cooperating	subnets	(e.g.,	networks	

of	the	same	organization)	

Multicast	addresses:	FF00::/8 

IPv4	addresses:	::/96,	e.g.,	IPv4’s	10.0.0.1	can	
be	written	as	0:0:0:0:0:0:A00:1	or	
::10.0.0.1 

Tunneling	

Not	all	routers	can	be	upgraded	simultaneous	

•  no	“flag	days”	
•  how	will	the	network	operate	with	mixed	IPv4	and	
IPv6	routers?		

	

	

	

	

	

	

	

	

Tunneling:	

IPv6	packets	carried	as	payload	in	IPv4 
datagrams	among	IPv4	routers	

A	 B	 E	 F	

IPv6 IPv6 IPv6 IPv6

tunnel	
Logical	view:	

Physical	view:	

A	 B	 E	 F	

IPv6 IPv6 IPv6 IPv6

C	 D	

IPv4 IPv4

Flow:	X	

Src:	A	

Dest:	F	

	

data	

Src:B	

Dest:	E	

Src:B	

Dest:	E	

A-to-B:	

IPv6
E-to-F:	

IPv6

B-to-E:	

IPv6	inside	

IPv4
Flow:	X	

Src:	A	

Dest:	F	

	

data	

Flow:	X	

Src:	A	

Dest:	F	

	

data	

Flow:	X	

Src:	A	

Dest:	F	

	

data	

NAT:	Network	Address	Translation	

10.0.0.1 

10.0.0.2 

10.0.0.3 

10.0.0.4 

138.76.29.7 

local	network	

(e.g.,	home	network)	

10.0.0/24 

rest	of	

Internet	

Datagrams	with	source	

and	destination	in	this	network	

have	10.0.0/24	addresses	for		
source	and	destination	(as	usual)	

All	datagrams	leaving	local	

network	have	the	same	source	NAT	

IP	address:	138.76.29.7,	
different	(new)	source	port	numbers	

Motivation:	a	stop-gap	measure	to	handle	the	IPv4 
address	exhaustion	problem	

•  share	a	limited	number	(≥	1)	of	global,	static	addresses	
among	a	number	of	local	hosts	

•  local	to	global	address	binding	done	per	connection,	on-demand	

NAT:	Example	

10.0.0.1 

10.0.0.2 

10.0.0.3 

138.76.29.7 

NAT	translation	table	

global	addr															local	addr	

S: 138.76.29.7:5001 
D: 128.119.40.186:80 2

2:	NAT	box	changes	

datagram	source	

address	from	

10.0.0.1:3345	to	
138.76.29.7:5001,	
updates	table	

S: 128.119.40.186:80  
D: 138.76.29.7:5001 3

3:	Reply	arrives	
destination	address:

138.76.29.7:5001 

S: 128.119.40.186:80  
D: 10.0.0.1:3345 4

4:	NAT	box	changes	

datagram	destination	

address	from	

138.76.29.7:5001	to	
10.0.0.1:3345 

1

1:	host	10.0.0.1	sends	
datagram	to	

128.119.40.186:80 

S: 10.0.0.1:3345 
D: 128.119.40.186:80 

10.0.0.4 

138.76.29.7:5001   10.0.0.1:3345 
……  …… 



A	NAT	Box’s	Functions	

1. Replaces	<sourceIP, port#>	of	every	
outgoing	datagram	to	<NATIP, newport#>	
•  update	header	checksum	

•  remote	hosts	use	<NATIP, newport#>	as	destination	address	
	

2. In	NAT	translation	table,	record	every		mapping	of	

<sourceIP, port#>	to	<NATIP, newport#>	

3. Replaces	<NATIP, newport#>	in	destination	field	of	
every	incoming	datagram	with	corresponding	

<sourceIP, port#>	stored	in	the	NAT	table	

•  update	header	checksum	

4. Forwards	modified	datagrams	into	the	local	network	

Why	new	port#?	

Why	not	simply	

use	the	original	

source	port#?	

IP	Address	Space	for	Private	Internets	

Three	blocks	of	the	IP	address	space	have	been	

reserved	for	private	internets	[RFC	1981]:		
	
10.0.0.0 - 10.255.255.255 (10/8 prefix) 

172.16.0.0 - 172.31.255.255 (172.16/12) 

192.168.0.0 - 192.168.255.255 (192.168/16) 

	

Why	must	private	Internets	use	reserved	address	

spaces?	

Types	of	NAT	

NAT	table	maps	iAddr+iPort	of	a	local	host	to	its	
eAddr+ePort	
1.  Full-cone	NAT:	

•  any	remote	host	can	send	packets	intended	for	iAddr+iPort	
to	eAddr+ePort 

2.  IP-restricted	NAT:	

•  a	remote	host	(rAddr)	can	send	packets	to	eAddr+ePort	only	if	
iAddr+iPort	has	contacted	rAddr	(at	any	remote		port,	rPort)	

3.  Port-restricted	NAT:	

•  a	remote	host	can	send	packets	to	eAddr+ePort	only	using	an	rPort	
that	iAddr+iPort	has	contacted	at	rAddr 

Symmetric	NAT:	eAddr+ePort	can	only	be	used	by	a	
pre-specified	connection,	iAddr+iPort+rAddr+rPort 

NAT	Type	Connectivity	

open	 full-cone	
IP-

restricted	

port-

restricted	
symmetric	

UDP-

disabled	

open	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

full-cone	 ✔	 ✔	 ✔	 ✔	 ✗	

IP-

restricted	
✔	 ✔	 ✔	 ✗	

port-

restricted	
✔	 ✗	 ✗	

symmetric	 ✗	 ✗	

UDP-

disabled	
✗	

[Shami	’09]	

table	is	symmetric	along	the	diagonal	



NAT	Type	Distribution	

open	 full-cone	 IP-restricted	 port-restricted	 symmetric	 UDP-disabled	

[Shami	’09]	

NAT	Traversal	

STUN	(Session	Traversal	Utilities	for	NAT):	

•  an	open	server	that	returns	to	NATted	host	the	

eAddr+ePort	used	by	its	NAT	box	

•  also	returns	the	type	of	the	NAT	box	

	

UPnP	(Universal	Plug	and	Play):	

•  allows	internal	hosts	to	add	static	entries	into	a	

UPnP-speaking	NAT	box’s	mapping	table	

•  used	to	traverse	full-cone	NAT	

• NAT	box	returns	eAddr+ePort	that	internal	host	
can	advertise	publicly,	e.g.,	when	registering	with	

BitTorrent	Tracker	

NAT	Traversal	

TURN	(Traversal	Using	Relays	around	NAT):	

•  an	open	server	that	serves	as	a	relay	for	a	host	behind	a	
symmetric	NAT	to	accept	connection	(from	a	single	host	

only,	i.e.,	not	for	NATted	host	to	act	as	server)	

•  also	useful	to	traverse	traffic-restrictive	firewalls	

NAT:	Pros	

Can	change	address	of	devices	in	local	network	

without	notifying	outside	world	

	

Devices	inside	local	network	not	explicitly	

addressable	by	or	visible	to	the	outside	world	

(security	through	obscurity)	



NAT:	Cons	

Devices	inside	local	network	not	explicitly	addressable	

by	or	visible	to	the	outside	world,	making	peer-to-peer	

networking	that	much	harder	

•  routers	should	only	process	up	to	layer	3	
(port#’s	are	application	layer	objects!)	

• port#’s	are	meant	to	identify	sockets,	not	end	hosts!	

	

Address	shortage	

should	be	solved	by	IPv6,	
instead	NAT	hinders	

the	adoption	of	IPv6!	 NAT	

10.0.0.1 

10.0.0.2 

138.76.29.7 
Requests	to	

138.76.29.7	

on	port	80 

Which	host	should	get	the	request?	

NAT:	Lesson	

Be	careful	what	you	propose	as	a	“temporary”	patch		

	

“Temporary”	solutions	have	a	tendency	to	stay	around	

beyond	expiration	date	


