Lab2 and PA1: P2P Search

Lab2: implement a peer node
* the first one listens for connection
CECh * subsequent ones try to join the network by
COMPUTER. NETWORKS connecting to a known peer
* return 1 known peer to joining peer
* if peer table (= 2) is full, decline (redirect) joining peer
* if join declined, try other peers (manually)

Lecture 4: PA1 Walk-through PAIl: extend Lab2, integrate with Lab1
* make peer table size a user-defined run-time
variable, default to NETIMG MAXPEERS (6)
*returnup to NETIMG MAXPEERS peers
* automate peer join on receiving peer list
* search for an image on the p2p network
* remote display image if found

PA1: More Peers PA1: Automatic Join

Larger peer table: linear insert/search is ok, may use

STL, e.g., hashmap allows for O(1) insert/search Continue to attempt joining until peer table full or

known peers exhausted

Assume no peer departure, except not to crash a Four cases to watch out for-

peer when network is being taken down 1. peer already in peer table
8 bits 8 bits 16 bits 2. peer “recently” rejected join request (peer declined table),
More peers: pmsg t | vers type npeers remember only the last NETIMG MAXPEERS rejections
peers[0] 3. pending peer upon successful connect () before receiving
reserved peer port#
only i acknowledgement
npeers =0
peer ipv4 address ? 4. simultaneous join (connect () returns -1 with errno setto

EADDRNOTAVAIL; peer not added to peer table if
connect () fails, peer will be added by the successful
accept () instead; peering relationship is bidirectional)

peers[npeers-1] reserved peer port#

peer ipv4 address

PA1: Image Search PA1: P2P Search

A node on the p2p network includes both peer If image not found locally, node sends out a search
(Lab2) and imgdb (Lab1) objects packet on the p2p network
It listens on 2 sockets: peer socket for p2p network + node maintains only one outstanding search at any one time
management, image socket for image query and reply - if there’s already an outstanding search, node returns

NETIMG EBUSY to clientreturns NETIMG NFOUND to client if
Client connects to the image socket and sends an times out waiting for search reply

igry t message to query foranimage
Y g query o gsbns o If image not found locally, node floods a search packet:

Node simply calls - search packet sent out to all peers, except incoming peer

. .. . vers type reserved
iﬁii;’&f?;i:ﬁ;;e P2P search packet is sent to another peer’s peer socket
|OC a | |y image name[NETIMG_MAXFNAME]
8 bits 8 bits 16 bits
PA1: P2P Search PA1: P2P Search

Each search is given a eserved rinaing peers If a pe.er.has.the queried image, it connegts dlrgctly to
the originating peer (not client) at the originating

searchID byits S
originating peer (can be peer’s image socket

a simple monotonically image name The returned image must be preceded by an imsg_t
increasing number) packet, with type field set to NETIMG FOUND

originating peer's ipv4 address

8 bits 8 bits 16 bits

Prevent loop by storing NETIMG MAXPEERS
number of search packets in a circular buffer

vers type depth format

width height

Don’t forward a search packet if:
« search packet recently seen and forwarded already

To test, run your p2pdb (or re fp2pdb) on a folder
with only one image file so that each peer has only
one, unique local image file

* peer is incoming peer

PA1: Demultiplexing

On animage socket, a peer may receive a
NETIMG QUERYoraNETIMG FOUND packet

8 bits 8 bits 16 bits 8 bits 8 bits 16 bits

vers type reserved vers type depth format

PA1: Demultiplexing

On a peer socket, a peer may receive a PM_WLCU,
PM RDRT, or PM_SRCH packet

width height

image name[NETIMG_MAXFNAME]

Demultiplexing by the packet’s t ype field may use:
+ MSG_PEEK the first two bytes of packet

Check version number:
suse socks clear () toclear “pipe” of unrecognized bits

PA1: P2P Search

May “purchase” solutions to the labs:
* each lab costs 20 points

You DON'T have to build off the support code

* you may build your own from scratch

BUT must interoperate with re fp2pdb and the
netimg clientand NOT RECOMMENDED

Turn in your implementation of both p2pdb and
netimg

8 bits 8 bits 16 bits 8 bits 8 bits 16 bits
vers type search ID vers type npeers
originating peer's
reserved image socket port# reserved peer port# only i
npeers # 0
originating peer's ipv4 address peer ipv4 address

image name

Demultiplexing by the packet’s t ype field may use
« recv () the first four bytes of packet first

Hygiene

Keep a back up of all your submitted files (as
individual files) on a private third party repository
* local file modification dates can be easily modified —10pts

Don’t turn in support code you havent modified —4pts
Don’t turn in binary (exe, obj, dll, image) files —4pts

Don’t use library or compiler option not used in the
provided Makefile —10pts

Please do NOT share support code
with others not taking the course

NEVER share access to your accounts

