
Computer Networks

Lecture	4:	PA1	Walk-through	

Lab2	and	PA1:	P2P	Search	
Lab2:	implement	a	peer	node	
• the	first	one	listens	for	connection	
• subsequent	ones	try	to	join	the	network	by	
connecting	to	a	known	peer	
• return	1	known	peer	to	joining	peer	
•  if	peer	table	(= 2)	is	full,	decline	(redirect)	joining	peer	
•  if	join	declined,	try	other	peers	(manually)	

PA1:	extend	Lab2,	integrate	with	Lab1
• make	peer	table	size	a	user-defined	run-time	
variable,	default	to	NETIMG_MAXPEERS	(6)	
• return	up	to	NETIMG_MAXPEERS	peers	
• automate	peer	join	on	receiving	peer	list	
• search	for	an	image	on	the	p2p	network	
• remote	display	image	if	found	

Larger	peer	table:	linear	insert/search	is	ok,	may	use	
STL,	e.g.,	hashmap	allows	for	O(1)	insert/search	
	

Assume	no	peer	departure,	except	not	to	crash	a	
peer	when	network	is	being	taken	down	
	
More	peers:	

PA1:	More	Peers	

pmsg_t

peers[0]

peers[npeers-1]

PA1:	Automatic	Join	

Continue	to	attempt	joining	until	peer	table	full	or	
known	peers	exhausted	

Four	cases	to	watch	out	for:	
1. peer	already	in	peer	table	
2. peer	“recently”	rejected	join	request	(peer	declined	table),	
remember	only	the	last	NETIMG_MAXPEERS	rejections	

3. pending	peer	upon	successful	connect()	before	receiving	
acknowledgement	

4. simultaneous	join	(connect()	returns	-1	with	errno	set	to	
EADDRNOTAVAIL;		peer	not	added	to	peer	table	if	
connect()	fails,	peer	will	be	added	by	the	successful	
accept()	instead;	peering	relationship	is	bidirectional)	

PA1:	Image	Search	

A	node	on	the	p2p	network	includes	both	peer	
(Lab2)	and	imgdb	(Lab1)	objects

It	listens	on	2	sockets:	peer	socket	for	p2p	network	
management,	image	socket	for	image	query	and	reply	

Client	connects	to	the	image	socket	and	sends	an	
iqry_t	message	to	query	for	an	image	

Node	simply	calls	
imgdb::readimg()	
to	“search”	for	an	image	
locally	

PA1:	P2P	Search	
If	image	not	found	locally,	node	sends	out	a	search	
packet	on	the	p2p	network	
• node	maintains	only	one	outstanding	search	at	any	one	time	

•  if	there’s	already	an	outstanding	search,	node	returns	
NETIMG_EBUSY	to	clientreturns	NETIMG_NFOUND	to	client	if	
times	out	waiting	for	search	reply	

If	image	not	found	locally,	node	floods	a	search	packet:	
•  search	packet	sent	out	to	all	peers,	except	incoming	peer	

P2P	search	packet	is	sent	to	another	peer’s	peer	socket	

PA1:	P2P	Search	
Each	search	is	given	a	
searchID	by	its	
originating	peer	(can	be	
a	simple	monotonically	
increasing	number)	

Prevent	loop	by	storing	NETIMG_MAXPEERS	
number	of	search	packets	in	a	circular	buffer	

Don’t	forward	a	search	packet	if:	
•  search	packet	recently	seen	and	forwarded	already	

• peer	is	incoming	peer	

PA1:	P2P	Search	
If	a	peer	has	the	queried	image,	it	connects	directly	to	
the	originating	peer	(not	client)	at	the	originating	
peer’s	image	socket	

The	returned	image	must	be	preceded	by	an	imsg_t	
packet,	with	type	field	set	to	NETIMG_FOUND

To	test,	run	your	p2pdb	(or	refp2pdb)	on	a	folder	
with	only	one	image	file	so	that	each	peer	has	only	
one,	unique	local	image	file	

PA1:	Demultiplexing	
On	an	image	socket,	a	peer	may	receive	a	
NETIMG_QUERY	or	a	NETIMG_FOUND	packet	

	

	

	

	

Demultiplexing	by	the	packet’s	type	field	may	use:	
• MSG_PEEK	the	first	two	bytes	of	packet	

Check	version	number:	
• use	socks_clear()	to	clear	“pipe”	of	unrecognized	bits	

PA1:	Demultiplexing	
On	a	peer	socket,	a	peer	may	receive	a	PM_WLCM,	
PM_RDRT,	or	PM_SRCH	packet	

	

	

	

	

	

	

Demultiplexing	by	the	packet’s	type	field	may	use	
• recv()	the	first	four	bytes	of	packet	first	

PA1:	P2P	Search	
May	“purchase”	solutions	to	the	labs:	
• each	lab	costs	20	points	

You	DON’T	have	to	build	off	the	support	code	
• you	may	build	your	own	from	scratch	

BUT	must	interoperate	with	refp2pdb	and	the	
netimg	client	and	NOT	RECOMMENDED	
	
Turn	in	your	implementation	of	both	p2pdb	and	
netimg

Hygiene	

Keep	a	back	up	of	all	your	submitted	files	(as	
individual	files)	on	a	private	third	party	repository	
•  local	file	modification	dates	can	be	easily	modified 	−10pts	

Don’t	turn	in	support	code	you	haven’t	modified 	−4pts	

Don’t	turn	in	binary	(exe,	obj,	dll,	image)	files 	−4pts	

Don’t	use	library	or	compiler	option	not	used	in	the	
provided	Makefile −10pts	

Please	do	NOT	share	support	code	
with	others	not	taking	the	course	

NEVER	share	access	to	your	accounts	

