
EECS	487:	Interactive	
Computer	Graphics	
Lecture	41:		
Introduction	to	Procedural	Modeling	and	Animation	
•  Fractals	
•  Dynamics	
•  Particle	systems	
•  Behavioral	animation	

Procedural	Modeling	
Constructs	3D	models	using	algorithms	
•  for	models	that	are	too	complex	(or	tedious)	to	create	
manually,	e.g.,	
•  landscapes,	mountains,	clouds,	planets	
•  trees,	plants,	ecosystems	
•  buildings,	cities	
• usually	defined	by	a	small	set	of	data,	or	rules,	that	
describes	the	overall	properties	of	the	model,	e.g.,	
trees	defined	by	branching	properties	and	leaf	shapes	
• model	is	then	constructed	by	an	algorithm	
•  to	add	variety	and	realism,	
•  often	involves	fractal	geometry	
•  often	includes	randomness		
•  e.g.,	a	single	tree	pattern	can	be	used	to	model	an	entire	forest	

Schulze	

Self-Similarity	
Self-similar:	
•  viewing	scale	not	apparent	from	object	appearance	
• object	features	are	statistically	similar	between	
object	parts	and	the	overall	object	
•  for	example,	we	always	see	a	jagged	line	no	matter	
how	close	we	look	at	a	coastline	

•  infinite	details:	looks	good	and	natural	at	every	resolution	
• achieved	using	random	numbers	and	fractional	dimension	

Usually	generated	by	recursively	applying	the	
same	operation	(or	set	of	operations)	to	an	object	

Yu,Merrell	

Randomness	
Makes	models	more	interesting,	natural,	
and	less	uniform	and	“clean”	

Due	to	the	discrete	and	finite	nature	of	computers,	
we	can	only	generate	pseudo-random	numbers,	
based	on	some	initial	seed	value	

•  pseudo-random	sequences	are	repeatable,	
simply	by	resetting	the	seed	value	
•  a	different	seed	value	generates	a	different	sequence	of	
pseudo-random	numbers	

•  for	repeatability,	be	careful	of	dynamic	events	
effecting	the	use	of	the	pseudo-random	sequence	

Schulze	

Fractal	Dimension	
Measures	the	“roughness”	of	object	
• more	jagged	objects	have	larger	
fractal	dimension	

	
Use	Hausdorff	variant	to	approximate	fractal	dimension:	
•  subdivide	object	into	self-similar	pieces	with	scaling	factor	s
•  count	number	of	pieces	(n)	covered	by	original	object	
•  fractal	dimension	d = log(n)/log(s)
•  e.g.,	Sierpinski	Triangle	
•  take	a	triangle	
•  scale	down	to	½		
•  make	3	copies	and	arrange	
into	a	triangle	of	original	size	

•  repeat	forever	
•  d = log(3)/log(2) = 1.58	

Yu,Merrell	

Procedural	Terrain	Modeling	
Landscapes	are	often	constructed	as	height	fields	

Want:	a	height	function	y = h(x)
Random	midpoint	displacement	
•  start	with	some	initial	figure	(e.g.,	line	or	triangle)	
•  split	at	midpoints	and	add	random	displacement	
•  recurse,	decreasing	the	magnitude	of	displacements	
(by	a	factor	0 < f < 1)	

	
1D	Example:	

Yu,Merrell	

2D	Example	

Yu	

L-Systems	

Developed	by	A.	Lindenmayer,	a	biologist,	in	1968	
to	model	growth	patterns	of	algae	and	plants	
	
Grammar-based	fractal-like	models,	a.k.a.,	“graftals”	
	
Based	on	parallel	string-rewriting	rules	
•  describe	an	object	by	a	string	of	symbols	
•  and	a	set	of	production/rewriting	rules	
•  incorporate	notions	such	as	branching,	pruning,	…	

Schulze,Yu	

L-Systems	Extensions	

Bracketed:	save/restore	state	(for	branches)	

Parametric:	production	governs	by	parameter,	
e.g.,	change	color	at	certain	level	of	recursion	

Stochastic:	randomly	choose	one	of	several	
production	rules	provided	for	a	symbol	

Context	sensitive:	production	based	on	
neighboring	symbols	

Hodgins	

L-Systems	
Define	a	grammar:	G = {V, S, ω, P}
• V:	alphabet,	set	of	symbols	that	can	be	replaced	(variables)	
•  S:	set	of	symbols	that	remain	fixed	(constants)	
• ω:	axiom,	string	of	symbols	defining	initial	state	
• P:	production/rewriting	rules	
	
Example:	
• V:	A,	B
•  S:	
•  +:	turn	left	
•  -:	turn	right	
•  [:	push	state	onto	stack	
• ]:	pop	state	from	stack	
• ω:	B
• P:	B→A[+B][-B]

Schulze,Kuffner	

Parametric	L-System	
Turtle	graphics:	
•  F:	draw	forward	
•  f:	move	forward	
•  +:	turn	left	by	angle	//	parameter	
•  -:	turn	right	by	angle	//	parameter	
•  [:	push	current	state	onto	stack	
• ]:	pop	current	state	from	the	stack	

	
Koch’s	Snowflake	
• angle(2π)/6 //	parameter	
• axiom	F
• production	rule:	F→F+F--F+F

Start:	F
Generation	1:		
F+F--F+F
Generation	2:	
•  F+F--F+F+F+F--F+F--F+F--F+F
+F+F--F+F

Generation	n:	

Turtle	Graphics	
Koch’s	Island:	
• angle(2π)/4
• axiom	F+F+F+F
• production	rule:	F→F+F-F-FF+F+F-F

Tree:	
• angle(2π)/16	
• axiom	++++FS		
• production	rule:	S→+[FS]-[FS]-[FS]

L-Systems	for	Plants	
L-systems	can	capture	a	large	number	of	plant	species,	
though	designing	rules	for	specific	species	is	not	easy	
	
	
	
	
	
	
	
See	algorithmicbotany.org/papers/	
•  a	free	200	pages	ebook	
•  covers	many	variant	of	L-systems	
and	different	plant	types	

Hodgins	

L-System	for	Cities	

	real 	generated	

Street	system:	
•  start	with	a	single	street	
• branch	and	extend	with	parametric	L-system	
• parameters:	goals	and	constraints	
•  goals	control	street	direction,	spacing	
•  constraints	allow	for	parks,	bridges,	road	loops	

Hodgins	

Parish01	

L-System	for	Cities	

Buildings:	
• building	shapes	are	
represented	as	CSG	
operations	on	simple	shapes	

Hodgins	

Müller	et	al.	06	 Wonka	et	al.	03	

Parish&Müller01	

Keyframing:	interpolates	motion	from	“key”	positions	
+ perfect	control	
 can	be	tedious	
 no	realism	

	
Procedural:	solves	equations	to	compute	motion	
+  realistic	motion	
+  automatic	generation	
•  once	you	have	the	program,	
you	can	get	lots	of	motion	

 difficult	to	control	
 hard	to	tell	a	story	with	purely	procedural	means	
•  mostly	used	for	supporting	background/effects	

Motion	

McMillan	

Procedural	Animation	

Using	a	process	to	control	or	animate	some	
attribute,	including	shape	(modeling),	of	the	object	

Steps:	
•  program	some	rules	for	how	the	system	will	behave	

•  choose	some	initial	conditions	for	the	world	

•  run	the	program,	maybe	with	user	input	to	guide	what	
happens	

•  program	outputs	the	position/shape	of	the	scene	over	time	

Chenney	

Procedural	Animation	
Physically-based	animation	
• dynamics:	movements	

• point	mass	particle	systems	

•  spring-mass:	animating	the	
shape	and	reaction	of	cloth	

• fluid	flow:	water	waves	

Behavioral	animation	

• bird	or	fish	flocking	

•  crowd	animation	

Physically-based	Animation	

Kinematic	(key	framing):	describes	motion	without	
considering	causes	leading	to	motion	
•  considers	only	poses	
	

Dynamics	(procedural):	considers	underlying	forces	
•  inverse	dynamics:	
•  given	prescribed	motion,	what	are	the	forces	and	torques	required?	

•  forward	dynamics:		
•  compute	motion	from	initial	conditions	and	physical	laws:	
•  given	forces	and	torques,	what	is	the	motion?	

Funkhouser09,Hodgins,Funge99	

Inverse	Dynamics	
Given	prescribed	motion,	what	are	the	forces	and	
torques	required?	

Active	character:	character	has	internal	source	of	energy	

Animator	specifies	constraints:	
•  character’s	physical	structure	
•  e.g.,	articulated	figure	

•  character’s	task	
•  e.g.,	jump	from	here	to	there	in	time	t

•  other	physical	structures	present	
•  e.g.,	floor	to	push	off	and	land	

• motion	requirements	
•  e.g.,	minimize	energy	

Funkhouser,	Lasseter	

Inverse	Dynamics	
Computer	solves	for	the	
“best”	physical	motion	
satisfying	constraints	

Example:	object	with	jet	propulsion	

•  x(t):	position	of	object	at	time	t

•  f(t):	propulsion	force	at	time	t

•  equation	of	motion:	mx” − f − mg = 0

•  task:	move	from	a	to	b	from	t0	to	t1	with	minimum	jet	fuel,	
minimize																				with	x(t0) = a	and	x(t1) = b

•  solve	with	iterative	optimization	method	

Funkhouser	

f (t)2
t0

t1

∫ dt

Witkin&Kass	

Inverse	Dynamics	
Advantages:	
•  animators	don’t	have	to	specify	details	of	
physically	realistic	motion	with	spline	curves	
•  easy	to	vary	motions	due	to	new	parameters	
and/or	new	constraints	

	

For	example,	adapting	motion:	
	
	
	
	
	

original	jump 	heavier	base	
Funkhouser,	Witkin&Kass	

E.g.,	with	state	machines	

	
	
	
Challenges:	
•  specifying	constraints	and	objective	functions	
•  avoiding	local	minima	during	optimization	
•  retargeting	motion	to	new	characters	
•  need	a	larger	variety	of	motions	
(not	just	well-defined	sport	motions)	
•  real-time	performance	

Controlling	Motion	

Funkhouser,	Hodgins	

	compression		 	decompression	 		flight1	 	flight2	 	landing		horse	

compression	

decompression	

	flight1	

	flight2	

entry	

E.g.,	with	state	machines	

	
	
	
Challenges:	
•  specifying	constraints	and	objective	functions	
•  avoiding	local	minima	during	optimization	
•  retargeting	motion	to	new	characters	
•  need	a	larger	variety	of	motions	
(not	just	well-defined	sport	motions)	
•  real-time	performance	

Controlling	Motion	

Funkhouser,	Hodgins	

	compression		 	decompression	 		flight1	 	flight2	 	landing		horse	

compression	

decompression	

	flight1	

	flight2	

entry	

Forward	Dynamics	

Funkhouser,	Hodgins,	McAllister	

Given	initial	conditions	and	physical	laws,	what	is	
the	motion?	
•  initial	conditions:	mass,	forces,	torques	

•  apply	physical	laws,	e.g.,	Newton’s	laws,	Hook’s	law,	etc.	

•  simulate	physical	phenomena:	
•  gravity,	momentum	(inertia),	friction,	collisions,	elasticity,	
solidity,	flexibility,	fracture,	explosion,	fluid	flow,	aerodynamics	
(drag/viscosity,	turbulence)	

• motion	computed	using	numerical	simulation	methods	
•  particle	systems	
•  rigid	bodies	
•  soft-objects	(spring-mass)	
•  fluid	

How	to	Render	Fire?	

Gilles	

Texture	mapping	polygons	is	
fast	and	acceptable	for	short-
lived	effects	
•  overlay	a	flame	point	with	
a	series	of	textured	polygons	
•  for	enhanced	realism,	we	
could	introduce	secondary	
light	sources	at	the	fire	

	
Problems:	
• hard	to	sustain	for	long	periods	
• hard	to	spread	or	change	shape	
• no	translucency	

Particle	Systems	

Gilles,	Funkhouser	

Approximate	flame,	and	other	amorphous	objects,	
by	a	discrete	set	of	small	particles	
	
Single	particles	are	very	simple,	
just	point	mass	with	attributes:	
• mass,	position	
•  velocity,	forces	
•  color,	temperature,	shape	
•  lifetime	

Large	groups	can	produce	interesting	effects:	
•  rockets:	fireworks	
•  clouds:	water	drops	

x = (x, y, z)

v

Particle	Systems	

Gilles,	Funkhouser,	Reeves	

For	each	frame:	
•  create	new	particles	according	to	a	probability	
distribution	and	assign	attributes	
• delete	any	expired	particles	
• update	particles	based	on	attributes	and	physics	
•  numerical	solutions	to	ODE	
•  render	particles:	motion	blur,	compositing	

Where	to	create	particles?	
• predefined	sources	
•  surface	of	shape	
• where	particle	density	is	low,	etc.	

Particle	Systems	

Funkhouser,	Gilles,	McAllister	

When	to	delete	particles?	
• predefined	sink	
•  surface	of	shape	
• where	density	is	high	
•  lifetime	
•  random	

Example:	water	
• new	particles	created	each	frame	
•  the	number	created	per	frame	is	normally	distributed	
• each	particle	has	initial	downward	velocity	
•  again,	normally	distributed	
• on	each	successive	frame,	each	particle	is	
acted	on	by	“wind”	force	to	the	right	

Impact	

Treuille	

?

Davidhazy	

Static:	
•  radius	
•  mass	(m)	
•  racquet	
info	

Dynamic:	
•  position	(x)	
•  velocity	(v)	
•  rotation?	

Newtonian	particles:	F = m a
• F	and	a	are	vectors	
• given	F	and	position	at	time	t,	x(t),	
how	does	the	position	change	to	x(t+1)?	

Differential	Equations	

Witkin&Baraff	

Differential	equations	describe	the	relation	
between	an	unknown	function	and	its	derivatives	

Solving	a	differential	equation	means	finding	a	
function	that	satisfies	the	relation,	plus	some	
additional	constraints	

Ordinary	Differential	Equation	(ODE):	
•  “ordinary”:	function	of	one	variable	
•  partial	differential	equation	(PDE):	more	variables	

	

Discrete	time:	x t +1() = f x t(),t()
Continuous	time:	

dx t()
dt

= f x t(),t()
position	
velocity	

x =

x
y
z
!x
!y
!z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Differential	Equations	

Funkhouser,	Durand	

Computing	particle	motion	requires	
solving	a	2nd-order	differential	equation:	

Instead,	add	variable	v	to	form	coupled	
1st-order	differential	equations:	

For	animation,	want	a	series	of	values	x(ti), i = 0, 1, 2, …
• samples	of	the	continuous	function	x(t)

x = F(x, x,t)
m

v = x, v = F(x,v,t)
m

notation	!x 	for	dx / dt

f(x, t)	is	a	vector	field	defined	everywhere	
•  e.g.,	a	velocity	field	

	
	

	
	
•  it	may	change	based	on	t
•  x(t)	is	a	path	through	the	field:	
•  usually	no	analytical	solution	

Path	Through	a	Field	

x(t) = x0 + f (x,t)dt
t0

t

∫

x(t)

how	to	
compute?	

Since	we’re	working	in	fixed-frame	
intervals,	we	can	use	a	simple	
approximation	(Euler’s	method):	
• define	step	size	h

• given	x0 = x(t0),	take	step:�
t1 = t0 + h�
x(t1) = x0 + h f(x0, t0)

• piecewise-linear	approximation	of	the	curve	
•  step	size	controls	accuracy:	smaller,	more	accurate	
•  may	need	to	take	many	small	steps	per	frame	

Solving	the	Integration	

Durand	

f(x, t)

f(x0, t)

x0

Solving	the	Integration	

Durand	

Euler’s	method	is	the	simplest	numerical	method	

Consider	the	Taylor	expansion	of	x(t):

the	equation	for	Euler’s	method	simply	disregards	
higher-order	terms	and	replaces	the	first	derivative	
with	the	flow	field	function	
�	the	error	is	on	the	order	of	O(h2)	
	
Consequences:	Euler’s	method	is	inaccurate	and	unstable	

x t + h() = x t() + hdx
dt

+ h
2

2
d 2x
dt 2

+

Euler’s	Method:	Inaccurate	
To	move	along	a	circle:	
	
	
	
Moving	along	tangent,	e.g.,	
	
	
	
Euler’s	method	x(ti) = xi−1 + h f(xi−1, ti−1) spirals	
outward,	can	leave	curve,	no	matter	how	small	h	is	
•  smaller	h will	just	diverge	more	slowly	

x = f (x,t) = −y
x

⎛

⎝⎜
⎞

⎠⎟

Durand	

x(t) =
r cos(t + h)
r sin(t + h)

⎛

⎝
⎜

⎞

⎠
⎟

Euler’s	Method:	Unstable	
Consider	the	following	system:	
Exact	solution	is	decaying	exponential:	
Limited	step	size:	
If	k	is	big,	h	must	be	small	
	
	
	

Durand	

x = −kx, x(0) = 1
x = x0e

−kt

xi = xi−1 − h kxi−1() = (1− hk)xi−1

h ≤ 1/k, 	ok	
h > 1/k, 	oscillates	±
h > 2/k, 	explodes	

�	

Solving	the	Integration	

How	can	we	improve	upon	Euler’s	method?	

By	adding	another	term	from	the	Taylor’s	
expansion	of	x(t):	
	
	
	
Consider	two	alternatives:	
•  the	Trapezoid	method	
•  the	Midpoint	method	
both	have	errors	on	the	order	of	O(h3)	

x t + h() = x t() + hdx
dt

+
h2

2
d 2x
dt 2

+

Trapezoid	Method	
x(ti) = xi−1 + h f(xi−1, ti−1)

Problem:	approximated	f	varies	from	actual	f
Idea:	consider	f	at	the	arrival	of	the	step	and	

compensate	for	variation	
f1

a

b

Durand	

Let	f0 = f(x0, t0)	
f1 = f(x0 + hf0, t0 + h)

Then	a = hf0, b = hf1,
x(t0 + h) = x0+ (a + b)/2 + O(h3)
x(t0 + h) = x0+ h(f0 + f1)/2 + O(h3)
	
This	is	the	trapeziod	method,	
a.k.a.	improved	Euler’s	method	

Midpoint	Method	
x(ti) = xi−1 + h f(xi−1, ti−1)

Problem:	approximated	f	varies	from	actual	f	
Idea:	consider	f	at	half	step	and	compensate	for	variation	

Durand	

Choose	
Δx = h/2 f(x0, t0)	
then	rearrange	as	before,	
let	f0 = f(x0, t0)

fmid = f(x0 + h/2 f0, t0 + h/2)	
then	x(t0 + h) = x0+ hfmid + O(h3)	
	
This	is	the	midpoint	method,	
a.k.a.,	2nd-order	Runge-Kutta	

fm

Comparison	

Midpoint:	
• ½	Euler	step	
•  evaluate	fmid
•  compute	step	using	fmid

Trapezoid:	
•  Euler	step	(a)	
•  evaluate	f1	
•  compute	step	using	f1	(b)		
•  average	(a)	and	(b)	

Not	exactly	the	same	result,	
but	same	order	of	accuracy	

f1
a

b

Durand	

Higher-Order	Runge-Kutta	
4th	order:	
	
	
	
	
	
	
	
popular	because	orders	higher	than	4th	need	more	
stages	than	orders	to	compute	

k1 = hf (x0 ,t0)

k2 = hf (x0 +
k1
2
,t0 +

h
2
)

k3 = hf (x0 +
k2
2
,t0 +

h
2
)

k4 = hf (x0 + k3,t0 + h)

x(t0 + h) = x0 +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 +O(h

5)

order	 1 2 3 4 5 6 7 8
stages	 1 2 3 4 6 7 9 11

Treuille	

Forces	acting	on	the	particle	system	
is	a	sum	of	a	number	of	things	

Force	fields:	
•  gravity:	constant	downward	
force	proportional	to	mass	
f = −mg,�
g: gravitational	constant,	9.78 m/sec2	on	Earth	

•  other	particles:	particles	mutually	attract/repell	

•  attractive	force:	

	
•  repulsive	force:	

•  beware	O(n2)	complexity!	

May	the	Force	.	.	.	

O’Brien,Durand	

v0

m g

f = Gm1m2
d
d 3

f = −kr
d
d 3

pi

pj

Collisions	with	environment,	other	particles	
• detection:	potential	large	number	needed,	use	
hierarchical	bounding	volumes	
•  response:	particle	shape	and	size	needed	
• due	to	temporal	aliasing,	sub-frame	calculation	
required	so	as	not	to	miss	collision	time	

Collisions	

Durand	

v

p

v’
n

vvn

vt

vn = (v�n)n
vt = v − vn

v’−krvn

vt

v’ = vt − krvn
kr:	coeficient	of	

restitution	

Missed	Collisions	
Want	to	detect	collision	when (x−p)•n < ε, ε ≥ 0
Often	collision	detected	when	v�n < 0	

Solution:	backtrack	
•  compute	intersection	point	
•  ray-object	intersection!	
•  compute	response	there	
•  reconstruct	for	remaining		
fractional	time	step	

Other	solution/hack:	
•  project	to	surface	point	
closest	to	object

fixing	

backtracking	

Durand	

v
p

n
x

Simple	rendering:	
•  project	particles	to	view	frame	
•  blend	particle	projection	with	framebuffer	content	
(translucency)	

Particle	color:	
• make	color	a	function	of	age	
• make	color	a	function	of	temperature	
•  requires	other	ODEs	to	govern	these	properties	

Particle	Systems	Rendering	

Gilles	

Smoke	Particle	System	

Constantly	create	particles	
	
Particles	move	upwards,	with	
Perlin	turbulence	added	
	
Draw	them	as	partially	
transparent	circles	that	fade	
over	time	

Chenney	

Pre-render	bitmap	of	fireball	

Real-time	rendered	glow	

Animated	glowing	particles	

Quake	

Gilles	

Trees	in	Andre	and	Wally	B.	

Lots	of	trees	
	
Each	tree	branches	
recursively	
	
Leaves	as	particles	
• millions	of	particles	
• need	a	simple	model	for	
shading	each	

Shading	Model	for	Trees	

Ambient	
• dependent	on	how	deep	in	the	tree	da
•  independent	of	light	position	

Diffuse	
• dependent	on	distance	dd	inside	
the	tree,	in	the	direction	of	light	

Shadowed	
•  if	below	plane,	only	ambient	used	

Spring-Mass	Systems	

Model	objects	as	systems	of	
springs	and	masses	

The	springs	exert	forces,	
controlled	by	changing	their	rest	length	

A	reasonable,	but	simple,	physical	model	
for	muscles	

Advantage:	good	looking	motion	when	it	works	

Disadvantage:	expensive	and	hard	to	control	

Chenney	

Many	types	of	cloth	
•  very	different	properties	
•  not	a	simple	elastic	surface	
• woven	fabrics	tend	to	be	
very	stiff	
•  anisotropic	

Resolution	of	mesh	is	
critical	

Computation	of	
collisions	is	expensive	

Cloth	

Hodgins,	Breen,	Popovic	

stretch	springs	
shear	springs	
bend	springs	

Challenges	for	
Physically-Based	Animation	

Expensive	and	not	necessarily	realistic	
	
What	pieces	of	physics	are	necessary	for	
appearance?	
	
How	to	give	animator	control?	
•  how	to	give	artists	and	directors	the	results	they	want?	

Chenney,	Hodgins	

Perceptual	Hacks	
Viewers	can	be	pretty	oblivious	to	things	like	
incorrect	bounces	and	can’t	exactly	predict	how	
things	break	
	
	
	
	
	
Just	make	sure	objects	don’t	go	through	walls	
	
Shift	emphasis	from	physical	accuracy	to	
fast-and-looks-good	

Hodgins	

Behavioral	Animation	

Define	rules	for	the	way	an	object	behaves	
and	interacts	
•  programs	implement	the	rules	
•  objects	respond	to	their	changing	environment	

Classic	example:	“boids”	(Craig	Reynolds)	
•  emergent	behavior:	flocking	
•  really	just	a	particle	system	with	a	bit	of	
perception	and	a	bit	of	brain	power	

Hodgins	

Flocking	

Each	boid	perceives	neighbors	in	a	
neighborhood	

Each	boid’s	behavior	is	a	simple	function	
of	nearby	boids:	
•  separation	force	
•  steer	to	avoid	crowding	local	team	mates,	
keep	minimum	distance	

•  alignment	force	
•  align	velocities	

•  cohesion	force	
•  move	towards	average	position	of	neighbors	

http://www.red3d.com/cwr/boids/	
http://www.riversoftavg.com/downloads.htm	

Animation	Summary	(brief)	

Technique	 Control	
Time	to	
Create	

Computation	
Cost	

Interactivity	

Key-Framed	 Excellent	 Poor	 Low	 Low	

Motion	
Capture	

Good	at	time	
of	creation,	
after	that	poor	

Medium	 Medium	 Medium	

Procedural	 Poor	 Poor	to	
create	
program	

High	 High	

Chenney	

How	Are	Movies	Animated?	

Keyframing	mostly	

Articulated	figures,	inverse	kinematics	

Skinning		
•  complex	deformable	skin,	
muscle,	skin	motion	

Hierarchical	controls	
•  smile	control,	eye	blinking,	etc.		
•  keyframes	for	these	higher-level	controls	

A	huge	time	is	spent	building	the	3D	
models,	its	skeleton	and	its	controls	

Durand	

Mixing	Techniques	
Apply	physical	simulation	of	secondary	
motion	on	top	of	key-framed	primary	motion	
•  particularly	appropriate	for	cloth,	hair,	water	
•  use	particle	systems	for	“fuzzy”	objects	

Mix	motion-capture	and	physics:	
• motion-captured	person	kicks	a	ball	
which	is	then	physically	simulated	for	trajectory	

Chenney	

