48

EECS 487: Interactive Computer Graphics

Lecture 41:

Introduction to Procedural Modeling and Animation

- Fractals
- Dynamics
- Particle systems
- Behavioral animation

Self-Similarity

Self-similar:

- viewing scale not apparent from object appearance
- object features are statistically similar between
object parts and the overall object
- for example, we always see a jagged line no matter
how close we look at a coastline
- infinite details: looks good and natural at every resolution
- achieved using random numbers and fractional dimension

Usually generated by recursively applying the same operation (or set of operations) to an object

Procedural Modeling

Constructs 3D models using algorithms

- for models that are too complex (or tedious) to create manually, e.g.,
- landscapes, mountains, clouds, planets
- trees, plants, ecosystems
- buildings, cities
- usually defined by a small set of data, or rules, that describes the overall properties of the model, e.g., trees defined by branching properties and leaf shapes
- model is then constructed by an algorithm
- to add variety and realism,
- often involves fractal geometry
- often includes randomness
- e.g., a single tree pattern can be used to model an entire forest

Randomness

Makes models more interesting, natural, and less uniform and "clean"

Due to the discrete and finite nature of computers, we can only generate pseudo-random numbers, based on some initial seed value

- pseudo-random sequences are repeatable, simply by resetting the seed value
- a different seed value generates a different sequence of pseudo-random numbers
- for repeatability, be careful of dynamic events effecting the use of the pseudo-random sequence

Fractal Dimension

Measures the "roughness" of object

- more jagged objects have larger fractal dimension

Use Hausdorff variant to approximate fractal dimension:

- subdivide object into self-similar pieces with scaling factor s
- count number of pieces (n) covered by original object
- fractal dimension $d=\log (n) / \log (s)$
- e.g., Sierpinski Triangle
- take a triangle
- scale down to $1 / 2$
- make 3 copies and arrange into a triangle of original size
- repeat forever
- $d=\log (3) / \log (2)=1.58$

Procedural Terrain Modeling

Landscapes are often constructed as height fields
Want: a height function $y=h(x)$
Random midpoint displacement

- start with some initial figure (e.g., line or triangle)
- split at midpoints and add random displacement
- recurse, decreasing the magnitude of displacements (by a factor $0<f<1$)

1D Example:

L-Systems

Developed by A. Lindenmayer, a biologist, in 1968 to model growth patterns of algae and plants

Grammar-based fractal-like models, a.k.a., "graftals"

Based on parallel string-rewriting rules

- describe an object by a string of symbols
- and a set of production/rewriting rules
- incorporate notions such as branching, pruning, ...

L-Systems Extensions

Bracketed: save/restore state (for branches)
Parametric: production governs by parameter, e.g., change color at certain level of recursion

Stochastic: randomly choose one of several production rules provided for a symbol

Context sensitive: production based on neighboring symbols

Parametric L-System

Turtle graphics:

- F: draw forward
- f: move forward
- +: turn left by angle // parameter
- -: turn right by angle // parameter
- [: push current state onto stack
-] : pop current state from the stack

Koch's Snowflake

- angle (2π) / 6 // parameter
- axiom F
- production rule: $\mathrm{F} \rightarrow \mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}$

Start: F
Generation 1:
F+F--F+F
Generation 2:

- $\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}$
$+\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}$

Generation n :

Turtle Graphics

Koch's Island:

- angle (2π) / 4

- axiom $\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}$
- production rule: $\mathrm{F} \rightarrow \mathrm{F}+\mathrm{F}-\mathrm{F}-\mathrm{FF}+\mathrm{F}+\mathrm{F}-\mathrm{F}$

Tree:

- angle (2π) / 16
- axiom ++++FS
- production rule: $S \rightarrow+$ [FS] - [FS] - [FS]

L-Systems for Plants

L-systems can capture a large number of plant species, though designing rules for specific species is not easy

See algorithmicbotany.org/papers/

- a free 200 pages ebook
- covers many variant of L-systems and different plant types

HeACOOMHICEANOOPANS

L-System for Cities

real
generated
Street system:

- start with a single street
- branch and extend with parametric L-system
- parameters: goals and constraints
- goals control street direction, spacing
- constraints allow for parks, bridges, road loops

L-System for Cities

Motion

Keyframing: interpolates motion from "key" positions + perfect control

- can be tedious
- no realism

Procedural: solves equations to compute motion

+ realistic motion
+ automatic generation
- once you have the program you can get lots of motion
- difficult to control

- hard to tell a story with purely procedural means
- mostly used for supporting background/effects

Procedural Animation

Using a process to control or animate some attribute, including shape (modeling), of the object

Steps:

- program some rules for how the system will behave
- choose some initial conditions for the world
- run the program, maybe with user input to guide what happens
- program outputs the position/shape of the scene over time

Physically-based Animation

Kinematic (key framing): describes motion without considering causes leading to motion

- considers only poses

Dynamics (procedural): considers underlying forces

- inverse dynamics:
- given prescribed motion, what are the forces and torques required?
- forward dynamics:
- compute motion from initial conditions and physical laws:
- given forces and torques, what is the motion?

Procedural Animation

Physically-based animation

- dynamics: movements
- point mass particle systems
- spring-mass: animating the shape and reaction of cloth
- fluid flow: water waves

Behavioral animation

- bird or fish flocking
- crowd animation

Inverse Dynamics

Given prescribed motion, what are the forces and torques required?
Active character: character has internal source of energy
Animator specifies constraints:

- character's physical structure
- e.g., articulated figure
- character's task
- e.g., jump from here to there in time t
- other physical structures present
- e.g., floor to push off and land
- motion requirements
- e.g., minimize energy

Inverse Dynamics

Computer solves for the "best" physical motion satisfying constraints

Example: object with jet propulsion

- $x(t)$: position of object at time t
- $f(t)$: propulsion force at time t

- equation of motion: $m x^{\prime \prime}-f-m g=0$
- task: move from a to b from t_{0} to t_{1} with minimum jet fuel, minimize $\int_{\left|f(t)^{2}\right| d t}$ with $x\left(t_{0}\right)=a$ and $x\left(t_{1}\right)=b$
- solve with iterative optimization method

Controlling Motion

E.g., with state machines

Challenges:

- specifying constraints and objective functions
- avoiding local minima during optimization
- retargeting motion to new characters
- need a larger variety of motions (not just well-defined sport motions)
- real-time performance

Inverse Dynamics

Advantages:

- animators don't have to specify details of physically realistic motion with spline curves
- easy to vary motions due to new parameters and/or new constraints

For example, adapting motion:

original jump

heavier base

Controlling Motion

E.g., with state machines

Challenges:

- specifying constraints and objective functions
- avoiding local minima during optimization
- retargeting motion to new characters
- need a larger variety of motions (not just well-defined sport motions)
- real-time performance

Forward Dynamics

Given initial conditions and physical laws, what is the motion?

- initial conditions: mass, forces, torques
- apply physical laws, e.g., Newton's laws, Hook's law, etc.
- simulate physical phenomena:
- gravity, momentum (inertia), friction, collisions, elasticity, solidity, flexibility, fracture, explosion, fluid flow, aerodynamics (drag/viscosity, turbulence)
- motion computed using numerical simulation methods
- particle systems
- rigid bodies
- soft-objects (spring-mass)
- fluid

Particle Systems

Approximate flame, and other amorphous objects, by a discrete set of small particles

Single particles are very simple, just point mass with attributes:

- mass, position
- velocity, forces

- color, temperature, shape
- lifetime

Large groups can produce interesting effects:

- rockets: fireworks
- clouds: water drops

How to Render Fire?

Texture mapping polygons is fast and acceptable for shortlived effects

- overlay a flame point with a series of textured polygons
- for enhanced realism, we could introduce secondary light sources at the fire

Problems:

- hard to sustain for long periods
- hard to spread or change shape
- no translucency

Gilles

Particle Systems

For each frame:

- create new particles according to a probability distribution and assign attributes
- delete any expired particles
- update particles based on attributes and physics - numerical solutions to ODE
- render particles: motion blur, compositing

Where to create particles?

- predefined sources
- surface of shape
- where particle density is low, etc.

Particle Systems

When to delete particles?

- predefined sink
- surface of shape
- where density is high

- lifetime
- random

Example: water

- new particles created each frame
- the number created per frame is normally distributed
- each particle has initial downward velocity
- again, normally distributed
- on each successive frame, each particle is acted on by "wind" force to the right

Impact

Newtonian particles: $\mathbf{F}=m \mathbf{a}$

- \mathbf{F} and \mathbf{a} are vectors
- given \mathbf{F} and position at time $t, \mathbf{x}(t)$, how does the position change to $\mathbf{x}(t+1)$?

Differential Equations

Differential equations describe the relation between an unknown function and its derivatives

Solving a differential equation means finding a function that satisfies the relation, plus some additional constraints

Ordinary Differential Equation (ODE):

- "ordinary": function of one variable
- partial differential equation (PDE): more variables

Differential Equations

$$
\left.\begin{array}{r}
\text { position } \\
\text { velocity }
\end{array}\right]-\mathbf{x}=\left[\begin{array}{c}
x \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right] \begin{array}{r}
\text { Discrete time: } \mathbf{x}(t+1)=\mathbf{f}(\mathbf{x}(t), t) \\
\text { Continuous time: } \frac{d \mathbf{x}(t)}{d t}=\mathbf{f}(\mathbf{x}(t), t) \\
\text { notation } \dot{\mathbf{x}} \text { for } d \mathbf{x} / d t
\end{array}
$$

Computing particle motion requires
solving a $2^{\text {nd }}$-order differential equation: $\ddot{\mathbf{x}}=\frac{\mathbf{F}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$
Instead, add variable \mathbf{v} to form coupled
$1^{\text {st }}$-order differential equations: $\mathbf{v}=\dot{\mathbf{x}}, \dot{\mathbf{v}}=\frac{\mathbf{F}(\mathbf{x}, \mathbf{v}, t)}{m}$
For animation, want a series of values $\mathbf{x}\left(t_{i}\right), i=0,1,2, \ldots$

- samples of the continuous function $\mathbf{x}(t)$

Path Through a Field

$\mathbf{f}(\mathbf{x}, t)$ is a vector field defined everywhere

- e.g., a velocity field

how to
- it may change based on t
- $\mathbf{x}(t)$ is a path through the field: $\mathbf{x}(t)=\mathbf{x}_{0}+\int^{t} \mathbf{f}(\mathbf{x}, t) d t$
- usually no analytical solution

Solving the Integration

Euler's method is the simplest numerical method
Consider the Taylor expansion of $\mathbf{x}(t)$:

$$
\mathbf{x}(t+h)=\mathbf{x}(t)+h \frac{d \mathbf{x}}{d t}+\frac{h^{2}}{2} \frac{d^{2} \mathbf{x}}{d t^{2}}+\cdots
$$

the equation for Euler's method simply disregards higher-order terms and replaces the first derivative with the flow field function
\Rightarrow the error is on the order of $O\left(h^{2}\right)$
Consequences: Euler's method is inaccurate and unstable

Solving the Integration

Since we're working in fixed-frame intervals, we can use a simple approximation (Euler's method):

- define step size h
- given $\mathbf{x}_{0}=\mathbf{x}\left(t_{0}\right)$, take step:
$t_{1}=t_{0}+h$
$\mathbf{x}\left(t_{1}\right)=\mathbf{x}_{0}+h \mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right)$

- piecewise-linear approximation of the curve
- step size controls accuracy: smaller, more accurate
- may need to take many small steps per frame

Euler's Method: Inaccurate

To move along a circle:

$$
\mathbf{x}(t)=\binom{r \cos (t+h)}{r \sin (t+h)}
$$

Moving along tangent, e.g.,

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)=\binom{-y}{x}
$$

Euler's method $\mathbf{x}\left(t_{i}\right)=\mathbf{x}_{i-1}+h \mathbf{f}\left(\mathbf{x}_{i-1}, t_{i-1}\right)$ spirals outward, can leave curve, no matter how small h is - smaller h will just diverge more slowly

Euler's Method: Unstable

Consider the following system: $\dot{\mathbf{x}}=-k \mathbf{x}, \mathbf{x}(0)=1$
Exact solution is decaying exponential: $\mathbf{x}=\mathbf{x}_{0} e^{-k t}$
Limited step size: $\mathbf{x}_{i}=\mathbf{x}_{i-1}-h\left(k \mathbf{x}_{i-1}\right)=(1-h k) \mathbf{x}_{i-1}$ If k is big, h must be small $\left\{\begin{array}{l}h \leq 1 / k, \text { ok } \\ h>1 / k, \text { oscillates } \pm \\ h>2 / k, \text { explodes }\end{array}\right.$

Solving the Integration

How can we improve upon Euler's method?
By adding another term from the Taylor's expansion of $\mathbf{x}(t)$:

$$
\mathbf{x}(t+h)=\mathbf{x}(t)+h \frac{d \mathbf{x}}{d t}+\frac{h^{2}}{2} \frac{d^{2} \mathbf{x}}{d t^{2}}+\cdots
$$

Consider two alternatives:

- the Trapezoid method
- the Midpoint method
both have errors on the order of $O\left(h^{3}\right)$

Trapezoid Method

$$
\mathbf{x}\left(t_{i}\right)=\mathbf{x}_{i-1}+h \mathbf{f}\left(\mathbf{x}_{i-1}, t_{i-1}\right)
$$

Problem: approximated \mathbf{f} varies from actual \mathbf{f} Idea: consider \mathbf{f} at the arrival of the step and compensate for variation

$$
\begin{aligned}
\text { Let } \mathbf{f}_{0} & =\mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right) \\
\mathbf{f}_{1} & =\mathbf{f}\left(\mathbf{x}_{0}+h \mathbf{f}_{0}, t_{0}+h\right)
\end{aligned}
$$

Then $\mathbf{a}=h \mathbf{f}_{0}, \mathbf{b}=h \mathbf{f}_{1}$,
$\mathbf{x}\left(t_{0}+h\right)=\mathbf{x}_{0}+(\mathbf{a}+\mathbf{b}) / 2+O\left(h^{3}\right)$
$\mathbf{x}\left(t_{0}+h\right)=\mathbf{x}_{0}+h\left(\mathbf{f}_{0}+\mathbf{f}_{1}\right) / 2$
This is the trapeziod method, a.k.a. improved Euler's method

Midpoint Method

$$
\mathbf{x}\left(t_{i}\right)=\mathbf{x}_{i-1}+h \mathbf{f}\left(\mathbf{x}_{i-1}, t_{i-1}\right)
$$

Problem: approximated \mathbf{f} varies from actual \mathbf{f} Idea: consider \mathbf{f} at half step and compensate for variation

Choose
$\Delta \mathbf{x}=h / 2 \mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right)$
then rearrange as before, let $\mathbf{f}_{0}=\mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right)$
$\mathbf{f}_{\text {mid }}=\mathbf{f}\left(\mathbf{x}_{0}+h / 2 \mathbf{f}_{0}, t_{0}+h / 2\right)$ then $\widehat{\mathbf{x}\left(t_{0}+h\right)=\mathbf{x}_{0}+h \mathbf{f}_{\text {mid }}}+$

This is the midpoint method, a.k.a., $2^{\text {nd }}-$ order Runge-Kutta

Comparison

Midpoint:

- $1 / 2$ Euler step
- evaluate $\mathbf{f}_{\text {mid }}$
- compute step using $\mathbf{f}_{\text {mid }}$

Trapezoid:

- Euler step (a)
- evaluate f_{1}
- compute step using f_{1}
- average (a) and (b)

Not exactly the same result, but same order of accuracy

May the Force . .

Forces acting on the particle system
is a sum of a number of things

Force fields:

- gravity: constant downward force proportional to mass
 $\mathbf{f}=-m \mathbf{g}$,
g: gravitational constant, $9.78 \mathrm{~m} / \mathrm{sec}^{2}$ on Earth
- other particles: particles mutually attract/repell
- attractive force: $\mathbf{f}=G m_{1} m_{2} \frac{\mathbf{d}}{\|\mathbf{d}\|^{3}}$
- repulsive force: $\mathbf{f}=-k_{r} \frac{\mathbf{d}}{\|\mathbf{d}\|^{3}}$
- beware $O\left(n^{2}\right)$ complexity!

0

Collisions

Collisions with environment, other particles

- detection: potential large number needed, use hierarchical bounding volumes
- response: particle shape and size needed
- due to temporal aliasing, sub-frame calculation required so as not to miss collision time

Missed Collisions

Want to detect collision when ($\mathbf{x}-\mathbf{p}$) $\cdot \mathbf{n}<\varepsilon, \varepsilon \geq 0$
Often collision detected when $\mathbf{v} \cdot \mathbf{n}<0$
Solution: backtrack

- compute intersection point
- ray-object intersection!
- compute response there
- reconstruct for remaining fractional time step

Other solution/hack:

- project to surface point closest to object

Smoke Particle System

Constantly create particles

Particles move upwards, with Perlin turbulence added

Draw them as partially transparent circles that fade over time

Particle Systems Rendering

Simple rendering:

- project particles to view frame
- blend particle projection with framebuffer content (translucency)

Particle color:

- make color a function of age
- make color a function of temperature
- requires other ODEs to govern these properties

Quake

Pre-render bitmap of fireball
Real-time rendered glow
Animated glowing particles

Trees in Andre and Wally B.

Lots of trees

Each tree branches recursively

Leaves as particles - millions of particles

- need a simple model for shading each

Shading Model for Trees

Ambient

- dependent on how deep in the tree d_{a}
- independent of light position

Diffuse

- dependent on distance d_{d} inside the tree, in the direction of light

Shadowed

- if below plane, only ambient used

Cloth

Many types of cloth

- very different properties
- not a simple elastic surface
- woven fabrics tend to be very stiff
- anisotropic

Resolution of mesh is

stretch springs
shear springs critical

Computation of collisions is expensive

Model objects as systems of springs and masses

The springs exert forces, controlled by changing their rest length A reasonable, but simple, physical model for muscles

Advantage: good looking motion when it works
Disadvantage: expensive and hard to control

Challenges for Physically-Based Animation

Expensive and not necessarily realistic
What pieces of physics are necessary for appearance?

How to give animator control?

- how to give artists and directors the results they want?

Behavioral Animation

Define rules for the way an object behaves and interacts

- programs implement the rules
- objects respond to their changing environment

Classic example: "boids" (Craig Reynolds)

- emergent behavior: flocking
- really just a particle system with a bit of perception and a bit of brain power

Perceptual Hacks

Viewers can be pretty oblivious to things like incorrect bounces and can't exactly predict how things break

Just make sure objects don't go through walls
Shift emphasis from physical accuracy to fast-and-looks-good

Flocking

Each boid perceives neighbors in a neighborhood

Each boid's behavior is a simple function of nearby boids:

- separation force
- steer to avoid crowding local team mates, keep minimum distance
- alignment force
- align velocities
- cohesion force
- move towards average position of neighbors

Animation Summary (brief)

Technique	Control	Time to Create	Computation Cost	Interactivity
Key-Framed	Excellent	Poor	Low	Low
Motion Capture	Good at time of creation, after that poor	Medium	Medium	Medium
Procedural	Poor	Poor to create program	High	High

Mixing Techniques

Apply physical simulation of secondary motion on top of key-framed primary motion

- particularly appropriate for cloth, hair, water
- use particle systems for "fuzzy" objects

Mix motion-capture and physics:

- motion-captured person kicks a ball
which is then physically simulated for trajectory

How Are Movies Animated?

Keyframing mostly
Articulated figures, inverse kinematics
Skinning

- complex deformable skin, muscle, skin motion

Hierarchical controls

- smile control, eye blinking, etc.
- keyframes for these higher-level controls

A huge time is spent building the 3D models, its skeleton and its controls

