EECS 487: Interactive Computer Graphics

Lecture 40:
- Skinning and rigging, rotation by quaternion
- CSG
- Implicit surfaces, marching cube algorithm

Mesh Skinning
A simple way to deform a surface to follow a skeleton
- simulate skin using a mesh of polygons
- deform mesh based on an underlying skeleton

Mesh Skinning
A simple way to deform a surface to follow a skeleton

Linear Blend Skinning
A.k.a. skeletal subspace deformation (SSD), multi-matrix skin, matrix palette skinning, ...
- bone rotation deforms space around it
- a vertex on the skin-mesh is attached to multiple nearby bones
- skin deformation is a linear interpolation of transformations on bones: \(\mathbf{p}_i' = \sum w_{ij} \mathbf{M}_j \mathbf{p}_i \)
 - \(\mathbf{p}_i \): vertex \(i \)
 - \(\mathbf{M}_j \): bone \(j \)'s (rigid) movement transformation matrix
 - \(w_{ij} \): weight/influence of bone \(j \) on vertex \(i \) (\(\neq 0 \) only for \(\leq 4 \) nearby bones)

Rigging
Weights used in SSD are provided by the animator
- animator can paint weight maps: color-coded influence maps of each bone
- weights can be optimized to match a set of example/bind poses

Rigging:
- associating a bind pose with a skeleton
- and figuring out the weight maps of each bone of the skeleton for the bind pose
SSD Limitation

Surface collapses on the inside of bends and in the presence of strong twists (as when opening a door handle)
• reason: rotations cannot be combined/interpolated linearly!
• solution: add more bones for finer approximation, or change the blending rules (use quaternion)

Problems with Matrix Representation of Rotation

Doesn’t support composition:
90°CW + 90°CCW = zero matrix (instead of identity)

Doesn’t allow for interpolation: given rotation matrix M_i and time t_i, want $M(t)$ such that $M(t_i) = M_i$
• cannot interpolate each entry independently, for example:
 - let M_0 be identity and M_1 90° rotation around the x-axis

 $$
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & -1 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0.5 & 0.5 \\
 0 & -0.5 & 0.5 \\
 \end{bmatrix} = M_{0.5}
 $$

 but $M_{0.5}$ is not a rotation matrix: it does not preserve rigidity (angles and lengths) and is not orthonormal $M_{0.5}M_{0.5}^T \neq I$

Complex Numbers: Review

Vector $v = [a \ b]^T$ in the complex plane can be written as:

$$v = a + i \ b,$$

or in polar form:

$$v = r \cos \theta + i \ r \sin \theta,$$

where

$$r^2 = a^2 + b^2$$

and

$$\theta = \tan \frac{b}{a}$$
Series Expansion

Recall series expansion of e^x: $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$

Euler: replace x with $i\theta$

$$e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{-\theta^2}{2!} + \frac{-i\theta^3}{3!} + \frac{\theta^4}{4!} + ...$$

$$= \left(1 + \frac{-\theta^2}{2!} + \frac{\theta^4}{4!} + ...\right) + i\left(\frac{\theta}{1!} + \frac{-\theta^3}{3!} + ...\right)$$

$$= \cos \theta + i \sin \theta$$

Complex Numbers and Rotation

Let $u = a + ib$ be a complex number with modulus 1 ($||u||^2 = a^2 + b^2 = r^2 = 1$), then $u = r \cos \theta + i r \sin \theta = re^{i\theta} = e^{i\theta}$ for some θ

Pre-multiplying $w = c + id = re^{i\phi}$ with u gives:

$$uw = (a + ib)(c + id) = 1e^{i\theta}re^{i\phi} = re^{i(\theta + \phi)}$$

⇒ multiplying by a complex number is equivalent to rotation in the 2D plane!

Complex Numbers for 3D Rotation?

By analogy:

• 1-DOF rotations as constrained points on 1D-spheres in 2D
• 2-DOF rotations as constrained points on 2D-spheres in 3D
• 3-DOF rotations as constrained points on 3D-spheres in 4D

Quaternions

A quaternion is a 4D extension of complex number

Orthonormal basis in quaternions: i, j, k, each of which is square root of -1:

$$i^2 = j^2 = k^2 = -1$$

Cross-multiplication is like cross product:

$$ij = -ji = k$$

$$ki = -ik = j$$

$$jk = -kj = i$$
Quaternions

A quaternion is a linear combination of 1, i, j, k:

\[q = w + xi + yj + zk \]

\[|q| = \sqrt{w^2 + x^2 + y^2 + z^2} \]

A quaternion can also be interpreted as having a real, scalar part \(s = w \) and an imaginary, vector part \(v = [x y z]^T; q = (s, v) \)

• a real number \(r \) is a quaternion with vector 0: \(q = (r, 0) \)
• an ordinary vector \(u \) is a quaternion with scalar 0: \(q = (0, u) \)
• a point \(p \) is the quaternion: \(q = (0, p) \)
• a quaternion specifies a point in 4D (or 3D if \(s = 0 \))

Quaternion Properties

Conjugate: \(q^* = (s, -v) = w - xi - yj - zk \)

\((q^*)_s = q; (q_1q_2)_s = q_2^*q_1^*; (q_1 + q_2)_s = q_1^* + q_2^*\)

Magnitude: \(|q| = \sqrt{q^*q} = \sqrt{s^2 + v \cdot v} \)

Unit quaternion: \(|q| = 1\)

Inverse: \(q^{-1} = \frac{q^*}{|q|^2}; q^{-1}q = 1 \)

for unit quaternion, \(q^{-1} = q^* \)

Unit quaternions form a 3D sphere in the 4D space of quaternions

The product of two unit quaternions is another unit quaternion

Rotation by Unit Quaternion

If \(|q| = 1\) and \(a\) is a normalized vector through the origin, \(q = (\cos \theta/2, \sin \theta/2 \cdot a)\) represents a rotation by angle \(\theta\) about \(a\):

\((0, p') = q(0, p)q^{-1}, p'\) is \(p\) rotated by \(\theta\) about \(a\)

\(q\) can also be written as \(q = \cos \theta/2 + a \sin \theta/2 = re^{a\theta/2}\)

Any quaternion \(q = re^{a\theta/2}\) can be interpreted as a rotation simply by normalizing it (dividing by its length)

\(\Rightarrow\) for \(q = (s, v)\), there exists a vector \(a\) and a \(\theta\) such that:

\(q = (\cos \theta/2, \sin \theta/2 \cdot a)\)

Both \(q\) and \(-q\) represent the same rotation (corresponding to angles \(\theta\) and \((2\pi - \theta)\))
Rotation by Unit Quaternion

$$\mathbf{q} = (s, \mathbf{v}) = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{a}), \|\mathbf{a}\| = 1$$

Rotation of \(\mathbf{u}\) around \(\mathbf{a}\) can be computed as: \(\mathbf{q}(0, \mathbf{u})\mathbf{q}^{-1}\)

Using the quaternion multiplication rule:

$$\mathbf{q}_1 \mathbf{q}_2 = \left[(\mathbf{s}_1 \mathbf{s}_2 - \mathbf{v}_1 \cdot \mathbf{v}_2), (\mathbf{s}_1 \mathbf{v}_2 + \mathbf{v}_1 \mathbf{s}_2 + \mathbf{v}_1 \times \mathbf{v}_2)\right]$$

we find that the scalar part of the result is 0, and the vector part is:

$$\mathbf{q}(0, \mathbf{u}) = (s^2 - \mathbf{v} \cdot \mathbf{v})\mathbf{u} + 2\mathbf{v}(\mathbf{v} \cdot \mathbf{u}) + 2s(\mathbf{v} \times \mathbf{u})$$

which is...

Using linear interpolation (\texttt{lerp}()) to interpolate between 2 orientations (i.e., quaternions):

$$\texttt{lerp}(\mathbf{q}_0, \mathbf{q}_1, t) = \mathbf{q}(t) = (1-t)\mathbf{q}_0 + t\mathbf{q}_1$$

results in a straight line progressions of interpolated orientations with non-uniform velocity (accelerates towards the middle, equidistance time intervals correspond to non-equidistant arc lengths):

Spherical Linear Interpolation

Spherical linear interpolation (\texttt{slerp}()) interpolates on the surface of the 4D unit hypersphere along the great arc (geodesic) between \(\mathbf{q}_0\) and \(\mathbf{q}_1\)

The usual trigonometric rules hold on the 4D arc, and \texttt{slerp}() is given by:

$$\mathbf{q}(t) = \texttt{slerp}(\mathbf{q}_0, \mathbf{q}_1, t) = \frac{\sin (1-t)\omega}{\sin \omega} \mathbf{q}_0 + \frac{\sin t\omega}{\sin \omega} \mathbf{q}_1,$$

$$\omega = \cos^{-1}(\mathbf{q}_0 \cdot \mathbf{q}_1) = \frac{\theta}{2},$$

the angle between \(\mathbf{q}_0\) and \(\mathbf{q}_1\).
nlerp()

Linearly-interpolated quaternions are not unit quaternions

But **slerp()** is expensive: lots of sine evaluations

nlerp(): do linear interpolation and then normalize
• not uniform, but not so bad if rotations are close enough

For details see: http://number-none.com/product/Hacking%20Quaternions/index.html

Smooth Spherical Curves

With **slerp()**
• rotation interpolates smoothly between two orientations
• is straightforward to compute
• no gimbal lock
• “twisting” motion is not an issue but
• consecutive rotations around different axes (all passing through a common point) produce sharply changing motion

Smooth spherical curves are similar to splines but uses spherical linear interpolation instead of simple linear interpolation [Shoe85]

Constructive Solid Modeling (CSG)

Widely (mainly) used in CAD/CAM

Object modeling for:
• casting, machining, extruding, etc.

Many manufactured objects can be represented by “combinations” of elementary geometric primitives

Primitives consist of rigid geometric shapes:
• blocks, pyramids, cylinders, spheres, etc.

Constructive Solid Geometry

Construct complex shapes by combining **simple primitives** using **boolean set operations**
• union: $A \cup B$, $A + B$, A or B
• intersection: $A \cap B$, $A*B$, A and B
• subtraction: $A \setminus B$, $A - B$, A and not B
Implicit Surfaces

Use the implicit functions of surfaces to represent objects
• actually describe solids since they have well-defined inside and outside.

Examples:
• sphere
• ellipsoid
• torus
• paraboloid
• hyperboloid

Implicit function is polynomial:
\[f(x,y,z) = a x^d + b y^d + c z^d + e x^{d-1} y + f x^{d-1} z + g y^{d-1} z + \ldots \]

Conic Sections

A common class of curves with a very long history
• defined by intersections of a plane with a cone
• describes several generally useful kinds of curves: circles, ellipses, parabolas, hyperbolas, and lines
• defined implicitly by the quadratic polynomial \(f(x,y) = a x^2 + 2bxy + 2cx + dy^2 + 2ey + f = 0 \)
• in matrix form:
\[f(x,y) = p^T Q p = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 \]

Quadric Surfaces

Quadrics are 3D analogues of conics
• defined by quadratic polynomial:
\[f(x,y,z) = a x^2 + 2bxy + 2cxz + 2dx + ey^2 + 2fyz + 2gy + hz^2 + 2iz + j = 0 \]
• or in matrix form:
\[f(x,y,z) = p^T Q p = \begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0 \]

• unit surface normal:
\[n = \frac{\nabla f}{||\nabla f||}, \text{ where } \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} \]

Variations?

Use the transformation trick

\[\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

Quadrics

Ellipsoid:
\[\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} + \frac{z^2}{r_z^2} - 1 = 0 \]

Sphere:
\[x^2 + y^2 + z^2 - r^2 = 0 \]

Cone:
\[x^2 + y^2 - z^2 = 0 \]

Hyperboloid:
\[x^2 + y^2 - z^2 \pm r^2 = 0 \]

Paraboloid:
\[x^2 + y^2 - r = 0 \]

Cylinder:
\[x^2 + y^2 = r^2 \]
Torus

Product of two implicit circles:

\[(x - R)^2 + z^2 - r^2 = 0 \text{ and} \]
\[(x + R)^2 + z^2 - r^2 = 0 \]

\[((x - R)^2 + z^2 - r^2)((x + R)^2 + z^2 - r^2) \]
\[= (x^2 - 2Rx + R^2 + z^2 - r^2)(x^2 + 2Rx + R^2 + z^2 - r^2) \]
\[= x^4 + 2x^2z^2 + z^4 - 2x^2r^2 - 2z^2r^2 + r^4 -
2x^2R^2 + 2z^2R^2 - 2r^2R^2 + R^4 \]
\[= (x^2 + z^2 - r^2 - R^2)^2 + 4z^2R^2 - 4r^2R^2 \]

Surface of rotation about the z-axis: replace \(x^2 \) with \(x^2 + y^2 \)

\[f(x,y,z) = (x^2 + y^2 + z^2 - r^2 - R^2)^2 + 4R^2(z^2 - r^2)\]

Advantages of Implicit Surface

The entire surface is represented by a single, constant value function (a.k.a. a level set or isosurface of the function)

• compact
• cleanly defined solid along with its boundary: can guarantee that model is watertight

Easy to determine if a point lies on the curve

• inside/outside test: great for intersections, unions, subtractions (CSG)
• useful as bounding volumes, e.g., for collision detection or ray tracing

Easy to compute surface normal

Efficient topology changes: can handle weird topology for animation

Model some real medical/scientific data well

CSG on Implicit Surfaces

Boolean operations are replaced by arithmetic:

• MAX replaces AND (intersection)
• MIN replaces OR (union)
• MINUS replaces NOT (unary subtraction)

Thus:

- \(f_{A \cup B} = \text{MIN}(f_A, f_B) \)
- \(f_{A \cap B} = \text{MAX}(f_A, f_B) \)
- \(f_{A - B} = \text{MAX}(f_A, -f_B) \)

Efficient Topology Changes

As the distance to the axis of revolution decreases, the ring torus becomes a spindle torus and then degenerates into a sphere
“Blobby” Models

Another advantage of isosurfaces is that you can add them up to merge the shapes!

Blobby model defines implicit surface as combination of blobs or metaballs
• each blob is formed from a seed point, \(s_i \)
• each seed point has a potential field surrounding it
• when the potential fields of two blobs overlap, they merge to form an implicit surface soft object

The potential field of a blob is usually an exponential function of distance (of surface point \(p \)) from the seed, \(f(p, s_i) \); often Gaussian is used:

\[
f_i(p, s_i) = h_i e^{-\sigma \|p-s_i\|^2} - \tau
\]

• varying the standard deviations (\(\sigma_i \)'s) of the Gaussians makes each blob bigger
• varying the threshold (\(\tau \)) makes blobs merge or separate

Fitting to real world data is not easy
• no sharp edges
• function extends to infinity, must trim to get desired patch (not easy)

Interactive control is not easy

Terrible for iterating over surface (unlike parametric)
⇒ expensive to render
• ray tracing is easiest (easier than parametric)
• can also use parametric surfaces (NURBs)
• or convert to polygons: Marching Cubes algorithm

Example isosurface of a 3D function:
Marching Cubes Algorithm

Used to convert an implicit surface to a polygonal mesh, for rendering by hardware, for example

Also used to render isosurface of volumetric data:
• function defined by regular samples on a 3D grid (like an image, but in 3D)
• example uses: medical imaging, numerical simulation, scientific visualization in general

Topics:
• height maps and contour curves
• drawing 2D isocontours using marching squares
• drawing 3D isosurfaces using marching cubes

Height Maps and Contour Plots

Height maps represent various data values with levels of elevation
• can be represented as contour-curves in 2D

Contour Tracking and Drawing

Contour marks the boundaries between regions of different scalar values
• can be lines (isocontours) in 2D, or
• surfaces (isosurfaces) in 3D

Consider the sample grid
• at every grid point \((x_i, y_j)\), \(f_{ij} = f(x_i, y_j)\)
 is either \(\leq\) or \(\geq\) \(c\)
• the red contour shows where \(f(x,y) = 7\),
the green one, \(f(x,y) = 8.5\)
• these contours can be constructed by linear interpolation:
 • e.g., 7 is \(\frac{3}{8}\)-way between (6, 9) and \(\frac{1}{8}\)-way between (6, 8)
 • connect the intersection points
 • simple, fast, usually sufficient

Marching Squares

Observation: there is only a finite number of ways a contour can pass through a cell (topological states, *number of vertices on one side or the other):
Marching Squares

To draw a contour:
1. For each cell, compute the inside/outside state of each vertex given the implicit function, e.g., \(f(x,y) = 7 \)
2. Generate an index from the lower left vertex, ccw, e.g., 0010
3. Look up topological state to determine contour “type”
4. Place contour on edges by interpolating between the values of its two vertices, e.g., 7 between (6, 9)
5. Contour plot can be generated by “marching” through the grid, left to right, top to bottom (with additional details . . .)

Marching Cubes

Marching square extended to 3D

Used to create isosurfaces (contours in 3D)

Contour passes through a cell in one of 15 topological states:

Marching Squares Ambiguities

Ambiguous labels can result in different contours

Disambiguate by subdivision:

Straddling cells: at least one vertex inside and one outside surface
- non-straddling cells can still contain contour

Marching Cubes

To render an implicit surface:
1. put object inside a 3D grid of cells
2. each vertex of a cell is either > or < the value of the isosurface at that cell
3. classify each cell into one of the 15 topological states
4. interpolate edge intersection from vertex values
5. build connectivity
6. be careful with correct orientation of surface normal and state/label ambiguity