
EECS	487:	Interactive	
Computer	Graphics	
Lecture	40:	
•  Skinning	and	rigging,	rotation	by	quaternion	
•  CSG	
•  Implicit	surfaces,	marching	cube	algorithm	

Mesh	Skinning	
A	simple	way	to	deform	a	surface	to	follow	a	skeleton	
•  simulate	skin	using	a	mesh	of	polygons	
•  deform	mesh	based	on	an	underlying	skeleton	

nvidia	Marschner	

A.k.a.	skeletal	subspace	deformation	(SSD),	
multi-matrix	skin,	matrix	palette	skinning,	…	
•  bone	rotation	deforms	space	around	it	
•  a	vertex	on	the	skin-mesh	is	
attached	to	multiple	nearby	bones	
•  skin	deformation	is	a	linear	
interpolation	of	transformations	
on	bones:	pi’ = ∑jwijMjpi, where	
•  pi:	vertex	i,
•  Mj	bone	j’s	(rigid)	movement	
transformation	matrix	
•  wij:	weight/influence	of	bone	j	on	
vertex	i	(≠ 0	only	for	≤ 4	nearby	bones)

Linear	Blend	Skinning	

[TP3,Lewis]	Marschner,Yu	

Rigging	
Weights	used	in	SSD	are	provided	by	the	animator	
•  animator	can	paint	weight	maps:	color-coded	influence	
maps	of	each	bone	
• weights	can	be	optimized	to	match	a	set	of	example/bind	
poses	

	
Rigging:	
•  associating	a	bind	pose	with	
a	skeleton	
•  and	figuring	out	the	weight	
maps	of	each	bone	of	the	
skeleton	for	the	bind	pose	

Wang	and	Phillips	02	Durand	

SSD	Limitation	
Surface	collapses	on	the	inside	of	bends	and	in	the	
presence	of	strong	twists	(as	when	opening	a	door	handle)	
•  reason:	rotations	cannot	be	combined/interpolated	linearly!	
•  solution:	add	more	bones	for	finer	approximation,	or	change	the	
blending	rules	(use	quaternion)	

Lewis	Marschner	

Problems	with	Matrix	
Representation	of	Rotation	
Doesn’t	support	composition:	
90ºCW	+	90ºCCW	=	zero	matrix	(instead	of	identity)	

Doesn’t	allow	for	interpolation:	given	rotation	matrix	
Mi	and	time	ti,	want	M(t)	such	that	M(ti) = Mi
•  cannot	interpolate	each	entry	independently,	for	example:	
let	M0	be	identity	and	M1	90o	rotation	around	the	x-axis	

	

	
	
but	M0.5	is	not	a	rotation	matrix:	it	does	not	preserve	rigidity	
(angles	and	lengths)	and	is	not	orthonormal	M0.5M0.5

T ≠ I	

interpolate (
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,
1 0 0
0 0 1
0 −1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
) =

1 0 0
0 0.5 0.5
0 −0.5 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=M0.5

Problems	with	Matrix	
Representation	of	Rotation	
No	composition:	
90ºCW	+	90ºCCW	=	zero	matrix	(instead	of	identity)	

No	interpolation:	given	rotation	matrix	Mi	and	time	ti,	
want	M(t)	such	that	M(ti) = Mi
•  cannot	interpolate	each	entry	independently,	for	example:	
let	M0	be	identity	and	M1	90o	rotation	around	the	x-axis	

	

	
	
but	M0.5	is	not	a	rotation	matrix:	it	does	not	preserve	rigidity	
(angles	and	lengths)	and	is	not	orthonormal	M0.5M0.5

T ≠ I	

interpolate	(
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,
1 0 0
0 0 1
0 −1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
) =

1 0 0
0 0.5 0.5
0 −0.5 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=M0.5

Vector	v = [a b]T	in	the	complex	plane	
can	be	written	as:	

v = a + i b,	
or	in	polar	form:	

v = r cos θ + i r sin θ ,	
where	

r2 = a2+b2	and	
θ = tan b/a	

Complex	Numbers:	Review	

O’Brien,	wikipedia	

 .

Re

Im

θ

Series	Expansion	

Recall	series	expansion	of	ex:	
	
Euler:	replace	x	with	iθ	
	
	
	
	
	
	

ex = 1+ x

1!
+ x 2

2!
+ x 3

3!
+ ...

eiθ = 1+ iθ
1!

+
−θ2

2!
+
−iθ3

3!
+
θ4

4!
+ ...

= 1+ −θ2

2!
+
θ4

4!
+ ...

⎛
⎝⎜

⎞
⎠⎟
+ i θ

1!
+
−θ3

3!
+ ...

⎛
⎝⎜

⎞
⎠⎟

= cosθ + isinθ

Let	u = a + i b	be	a	complex	number	
with	modulus	1	(||u||2 = a2 + b2 = r2 = 1),	
then	u = r cos θ + i r sin θ = reiθ = eiθ	for	some	θ
	
Pre-multiplying	w = c + i d = reiφ	with	u	gives:	
uw = (a + i b)(c + i d) = 1eiθreiφ = rei(θ + φ)

	
�	multiplying	by	a	complex	

number	is	equivalent	to	
rotation	in	the	2D	plane!	

Complex	Numbers	and	Rotation	

 .

Re

Im

φ

O’Brien,	wikipedia	

θ

Complex	Numbers	for	3D	Rotation?	

By	analogy:	
• 1-DOF	rotations	as	constrained	points	on	1D-spheres	in	2D

• 2-DOF	rotations	as	constrained	points	on	2D-spheres	in	3D

• 3-DOF	rotations	as	constrained	points	on	3D-spheres	in	4D

Durand	

A	quaternion	is	a	4D	extension	of	complex	number	

Orthonormal	basis	in	quaternions:	i,	j,	k,	
each	of	which	is	square	root	of	−1:	

i2 = j2 = k2 = −1

Cross-multiplication	is	like	cross	product:	
ij = −ji = k
ki = −ik = j
jk = −kj = i

Quaternions	

A	quaternion	is	a	linear	combination	of	1, i, j, k:	
	
	
	
	
A	quaternion	can	also	be	interpreted	as	having	a	real,	
scalar	part	(s = w)	and	an	imaginary,	vector	part �
v = [x	y	z]T:	q = (s, v)
•  a	real	number	r	is	a	quaternion	with	vector	0:	q = (r, 0)
•  an	ordinary	vector	u	is	a	quaternion	with	scalar	0:	q = (0, u)
•  a	point	p	is	the	quaternion:	q = (0, p)	
•  a	quaternion	specifies	a	point	in	4D	(or	3D	if	s = 0)	

Quaternions	

q = w + x i + yj + zk

q = w2 + x 2 + y2 + z2

TP3	

Addition	and	multiplication-by-scalar	as	usual:	
	
	
Multiplication:	
• when	real	parts	(s1, s2)	are	zero:	
the	resulting	quaternion	has	a	scalar	that	is	a	dot	product	of	
the	two	vector	parts,	negated,	and	a	vector	that	is	their	cross	
product	
•  if	one	quaternion	has	only	the	scalar	part,	zero	vector	part,	
multiplication	is	just	multiplication	by	scalar	
• combined:	
• multiplication	is	associative:	(q1 q2) q3 = q1(q2 q3)	
but	not	commutative:	q1 q2 ≠ q2 q1	

Quaternion	Properties	

 q1q2 = s1s2 − v1 ⋅v2(), s1v2 + s2v1 + v1 × v2()⎡⎣ ⎤⎦

q1 + q2 = (s1 + s2 , v1 + v2)
cq = (cs, cv)

 q1q2 = −v1 ⋅v2(), v1 × v2()⎡⎣ ⎤⎦

Conjugate:	q* = (s, −v) = w − xi − yj − zk
(q*)* = q; (q1q2)* = q2*q1*; (q1 + q2)* = q1* + q2*	
Magnitude:		
Unit	quaternion:	|q| = 1	

Inverse:	
	
for	unit	quaternion,	q−1 = q*	
Unit	quaternions	form	a	3D	sphere	
in	the	4D	space	of	quaternions	
The	product	of	two	unit	quaternions	is	
another	unit	quaternion	

Quaternion	Properties	

q = qq * = s2 + v ⋅v

q−1 =
q *
q 2 ; q

−1q = 1

Rotation	by	Unit	Quaternion	
If	|q| = 1	and	
a	is	a	normalized	vector	through	the	origin,	
q = (cos θ/2, sin θ/2 a) represents	a	rotation	
by	angle	θ	about	a:

(0, p’) = q(0, p)q−1, p’	is	p	rotated	by θ	about	a

q	can	also	be	written	as	q = cos θ/2 + a sin θ/2 = reaθ/2

	
Any	quaternion	q = reaθ/2	can	be	interpreted	as	a	rotation	
simply	by	normalizing	it	(dividing	by	its	length)	
�	for	q = (s, v),	there	exists	a	vector	a	and	a	θ	such	that:	

q = (cos θ/2, sin θ/2 a)

Both	q	and	−q	represent	the	same	rotation	
(corresponding	to	angles	θ	and	(2π − θ))	

p’ = qpq−1

q = (cos θ/2, sin θ/2 a)

a

p

Yu	

Rotation	by	Unit	Quaternion	
q = (s, v) = (cos θ/2, sin θ/2 a), ||a|| = 1
Rotation	of	u	around	a	can	be	computed	as:	q(0, u)q−1

Using	the	quaternion	multiplication	rule:	
	
we	find	that	the	scalar	part	of	the	result	is	0,	
and	the	vector	part	is: 	Using:	

	
	
	
	

which	is	.	.	.	

= (s2 − v ⋅v)u + 2v(v ⋅u)+ 2s(v × u)
= (cos2 (θ / 2)− sin2 (θ / 2))u
 + 2sin2 (θ / 2)a(a ⋅u)
 + (2cos(θ / 2)sin(θ / 2))(a × u)
= cosθu + (1− cosθ)a(a ⋅u)+ (sinθ)(a × u)

r × s = −s × r
r × s × t = (r ⋅ t)s − (r ⋅ s)t
cos(2ϕ) = cos2ϕ − sin2ϕ
sin2 (ϕ / 2) = (1− cosϕ) / 2
sin(2ϕ) = 2sinϕ cosϕ

Lozano-Perez&Popovic	

q1q2 = s1s2 − v1 ⋅v2(), s1v2 + s2v1 + v1 × v2()⎡⎣ ⎤⎦

Rotation	by	Unit	Quaternion	
Advantages	of	quaternions:	
• more	compact	than	rotation	matrices	
•  can	be	easily	converted	to	matrices	if	necessary,	
for	q = (cos θ/2, sin θ/2 a) = (w, v) = (w, x, y, z)	

	
	
	
	

Can	compose	rotations	by	quaternion	multiplication,	
e.g.,	two	rotations	q1	and	q2	composed	as:	
 q2q1(0, u)q1

–1q2
–1

Rq =

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy 0
2xy + 2wz 1− 2x 2 − 2z2 2yz − 2wx 0
2xz − 2wy 2yz + 2wx 1− 2x 2 − 2y2 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Lozano-Perez&Popovic	

Linear	Interpolation	
Using	linear	interpolation	(lerp())	to	interpolate	
between	2	orientations	(i.e.,	quaternions):	
	
results	in	a	straight	line	progressions	of	interpolated	
orientations	with	non-uniform	velocity	(accelerates	
towards	the	middle,	equidistance	time	intervals	
correspond	to	non-equidistant	arc	lengths):	

lerp q0,q1, t() = q(t) = 1− t()q0 + tq1

Durand	

lerp() slerp()

q1 q0 q1 q0

Spherical	linear	interpolation	(slerp())	interpolates	
on	the	surface	of	the	4D	unit	hypersphere	along	the	
great	arc	(geodesic)	between	q0	and	q1

The	usual	trigonometric	rules	hold	
on	the	4D	arc,	and	slerp()	is	given	by:	

keyframes	 lerp() slerp()

q0q1
q(t)

q(t)

Spherical	Linear	Interpolation	

TP3,Durand	

q0q1

q(t)

ω tω

	

q(t) =slerp q0 ,q1,t() = sin 1− t()ω
sinω

q0 +
sin tω
sinω

q1,

ω = cos−1 q0 ⋅q1() = θ
2
,	the	angle	between	q0 	and	q1

nlerp()
Linearly-interpolated	quaternions	are	not	unit	
quaternions	

But	slerp()	is	expensive:	lots	of	sine	evaluations	
nlerp():	do	linear	interpolation	and	then	normalize	
•  not	uniform,	but	not	so	bad	if	rotations	are	close	enough	

q1

q0

For	details	see:	
http://number-none.com/product/
Hacking%20Quaternions/index.html	

Durand	

With	slerp()	
• rotation	interpolates	smoothly	between	two	orientations	
•  is	straightforward	to	compute	
• no	gimbal	lock	
• “twisting”	motion	is	not	an	issue	

but	
• consecutive	rotations	around	different	axes	(all	passing	
through	a	common	point)	produce	sharply	changing	motion	

	
Smooth	spherical	curves	are	similar	to	splines	but	
uses	spherical	linear	interpolation	instead	of	simple	
linear	interpolation	[Shoe85]	

Smooth	Spherical	Curves	

TP3	

Widely	(mainly)	used	in	CAD/CAM

Object	modeling	for:
•  casting,	machining,	extruding,	etc.	

Many	manufactured	objects	can	be	
represented	by	“combinations”	of	
elementary	geometric	primitives	
	
Primitives	consist	of	rigid	geometric	shapes:	
• blocks,	pyramids,	cylinders,	spheres,	etc.	

Constructive	Solid	Modeling	(CSG)	

Watt	2000	

Constructive	Solid	Geometry	
Construct	complex	shapes	by	
combining	simple	primitives	
using	boolean	set	operations	
•  union:	A∪B, A +B, A or B
•  intersection:	A∩B, A*B, A and B
•  subtraction:	A\B, A−B, A and not B

A

B

A�B

A�B

A–B

B–A

Hart08	

(e)(a)

A

B

(b) (c) (d)

Foley,	van	Dam	92	

Use	the	implicit	functions	of	
surfaces	to	represent	objects	
• actually	describe	solids	since	they	
have	well-defined	inside	and	outside	

Examples:	
•  sphere	
•  ellipsoid	
•  torus	
•  paraboloid	
•  hyperboloid	

Implicit	function	is	polynomial:	
f (x,y,z) = ax d + by d + cz d + ex d−1y + fx d−1z + gy d−1z + …

Implicit	Surfaces	

Funkhouser	

f < 0

f > 0
f = 0 Conic	Sections	

Yu,	andrews.edu	

A	common	class	of	curves	with	
a	very	long	history	
• defined	by	intersections	of	
a	plane	with	a	cone	
• describes	several	generally	
useful	kinds	of	curves:	circles,	
ellipses,	parabolas,	hyperbolas,	
and	lines	
• defined	implicitly	by	the	quadratic	
polynomial	
•  in	matrix	form:	

f (x,y) = ax2 + 2bxy + 2cx + dy2 + 2ey + f = 0

f (x, y) = pTQp = x y 1⎡
⎣

⎤
⎦

a b c
b d e
c e f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0

Quadric	Surfaces	

Yu,Heckbert	

Quadrics	are	3D	analogues	of	conics	
• defined	by	quadratic	polynomial:	

f (x,y,z) = ax2 + 2bxy + 2cxz + 2dx + ey2 + 2fyz + 2gy + hz2 + 2iz + j = 0

• or	in	matrix	form:	

• unit	surface	normal:	

f (x, y, z) = pTQp = x y z 1⎡
⎣

⎤
⎦

a b c d
b e f g
c f h i
d g i j

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0

	

n = ∇f
f
, 	where	∇f =

∂ f ∂x
∂ f ∂y
∂ f ∂z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Quadrics	

r
z

yx

Sphere:�
x2 + y2 + z2 − r2 = 0

z

yx

Cylinder: �
x2 + y2 − r2 = 0

z

yx

Paraboloid: �
x2 + y2 − z = 0

z

yx

Cone: �
x2 + y2 − z2 = 0

z

yx

z

yx

Hyperboloid: �
x2 + y2 − z2 ± r2 = 0

Variations?	
Use	the	transformation	trick	

Heckbert,Hart,Funkhouser	

x
rx

⎛
⎝⎜

⎞
⎠⎟

2

+ y
ry

⎛

⎝⎜
⎞

⎠⎟

2

+ z
rz

⎛
⎝⎜

⎞
⎠⎟

2

−1= 0

Ellipsoid:	

Torus	
Product	of	two	implicit	circles:	
(x – R)2 + z2 − r2 = 0 and	
(x + R)2 + z2 − r2 = 0

((x − R)2 + z2 − r2)((x + R)2 + z2 − r2)
= (x2 − 2Rx + R2 + z2 − r2) (x2 + 2Rx + R2 + z2 − r2)
= x4 + 2x2z2 + z4 − 2x2r2 − 2z2r2 + r4 −�

2x2R2 + 2z2R2 − 2r2R2 + R4

= (x2 + z2 − r2 − R2)2 + 4z2R2 − 4r2R2	

Surface	of	rotation	about	the	z-axis:	replace	x2	with	x2+y2

f(x,y,z) = (x2 + y2 + z2 − r2 − R2)2 + 4R2(z2 − r2)

R

r x

z

Hart08	

The	entire	surface	is	represented	by	a	single,	constant	value	
function	(a.k.a.	a	level	set	or	isosurface	of	the	function)
•  compact	
•  cleanly	defined	solid	along	with	its	boundary:	
can	guarantee	that	model	is	watertight	

Easy	to	determine	if	a	point	lies	on	the	curve	
•  inside/outside	test:	great	for	intersections,	unions,	subtractions	(CSG)	
•  useful	as	bounding	volumes,	e.g.,	for	collision	detection	or	ray	tracing	

Easy	to	compute	surface	normal	

Efficient	topology	changes:	can	
handle	weird	topology	for	animation	

Model	some	real	medical/scientific	
data	well	

Advantages	of	Implicit	Surface	

Hodgins,Ramamoorthi,Yu,Durand	 Adams	EECS	487	F09	

Boolen	operations	are	replaced	by	arithmetic:	
•  MAX	replaces	AND	(intersection)	
•  MIN	replaces	OR	(union)	
•  MINUS	replaces	NOT	(unary	subtraction)	

Thus:	
•  fA∪B = MIN(fA, fB)
•  fA∩B = MAX(fA, fB)
•  fA−B = MAX(fA, −fB)	

CSG	on	Implicit	Surfaces	

Hodgins	

A
fA < 0 �

 B
fB < 0�

 B
 fB < 0�

A
fA < 0 �

Efficient	Topology	Changes	

wikipedia	

As	the	distance	to	the	axis	of	
revolution	decreases,	the	ring	
torus	becomes	a	spindle	torus	and	
then	degenerates	into	a	sphere	

Another	advantage	of	isosurfaces	is	that	
you	can	add	them	up	to	merge	the	shapes!	

Blobby	model	defines	implicit	surface	as	
combination	of	blobs	or	metaballs
• each	blob	is	formed	from	a	seed	point,	si	
• each	seed	point	has	a	potential	field	surrounding	it	
• when	the	potential	fields	of	two	blobs	overlap,	
they	merge	to	form	an	implicit	surface	soft	object	

“Blobby”	Models	

Chenney.Yu,Hodgins,Durand	

The	potential	field	of	a	blob	is	usually	an	
exponential	function	of	distance	(of	surface	
point	p)	from	the	seed,	f (p, si);	often	
Gaussian	is	used:	
	
	
• varying	the	standard	deviations	
(σi’s)	of	the	Gaussians	makes	
each	blob	bigger	
• varying	the	threshold	(τ)	
makes	blobs	merge	or	separate	

“Blobby”	Models	

Chenney.Yu,Hodgins,Durand	

 fi (p,si) = hie
−σi p−si

2

− τ

The	implicit	surface	soft	objects	is	a	combination	of	
these	functions	:	
	
	

Example	isosurface	of	a	3D	function:	

“Blobby”	Models	

Yu,Durand	

f (p) = wi fi (p, si)
i
∑⎛⎝⎜

⎞
⎠⎟
− τ = 0

f

f = f1+f2

f1 f2

Fitting	to	real	world	data	is	not	easy	
•  no	sharp	edges	
•  function	extends	to	infinity,	must	trim	
to	get	desired	patch	(not	easy)	

Interactive	control	is	not	easy	

Terrible	for	iterating	over	surface	(unlike	parametric)	
� expensive	to	render	
•  ray	tracing	is	easiest	(easier	than	parametric)	
•  can	also	use	parametric	surfaces	(NURBs)	
•  or	convert	to	polygons:	Marching	Cubes	algorithm	

Disadvantages	of	Implicit	Surface	

Hodgins,Ramamoorthi,Funkhouser	

Used	to	convert	an	implicit	surface	to	a	polygonal	
mesh,	for	rendering	by	hardware,	for	example	

Also	used	to	render	isosurface	of	volumetric	data:	
•  function	defined	by	regular	samples	on	a	3D	grid	
(like	an	image,	but	in	3D)	

•  example	uses:	medical	imaging,	numerical	
simulation,	scientific	visualization	in	general	

Topics:	
•  height	maps	and	contour	curves	
•  drawing	2D	isocontours	using	marching	squares	
•  drawing	3D	isosurfaces	using	marching	cubes	

Marching	Cubes	Algorithm	

James	

Height	Maps	and	
Contour	Plots	
Height	maps	represent	various		
data	values	with	levels	of	elevation	
• can	be	represented	as	
contour-curves	in	2D

Spadaccini07	

Contour	Tracking	and	Drawing	
Contour	marks	the	boundaries	between	regions	of	
different	scalar	values	
•  can	be	lines	(isocontours)	in	2D,	or	
•  surfaces	(isosurfaces)	in	3D	

Consider	the	sample	grid	
•  at	every	grid	point	(xi, yi),	fij = f (xi,	yi)	
is	either	≤ or	≥ c
•  the	red	contour	shows	where	f (x,y)=7,		
the	green	one,	f (x,y)=8.5	
•  these	contours	can	be	constructed	by	linear	interpolation:	
•  e.g.,	7	is	�-way	between	(6, 9)	and	½-way	between	(6, 8)
•  connect	the	intersection	points	
•  simple,	fast,	usually	sufficient	

Spadaccini07	

Observation:	there	is	only	a	finite	number	of	ways	a	
contour	can	pass	through	a	cell	(topological	states,*	
number	of	vertices	on	one	side	or	the	other)	:	
	
	
	
	
	
	
	

•  f (x,y)	represented	by	the	line	
•  black	dots	represent	vertices	with	value	> f (x,y)	
•  (we’re	not	computing	intersections,	yet)	

*we	don’t	need	to	store	all	16	states,	instead	transform	similar	states	

Marching	Squares	

Lorensen&Cline87	

5

CITS4241 - Lectures 5 & 6 17

Marching Squares

• Let's work out the possibilities:

Point above contour
(index bit = 1)

0000

0 1

23

0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

CITS4241 - Lectures 5 & 6 18

Marching Squares

• Algorithm
• Select a cell

• Calculate inside/outside state of each vertex

• Generate topological state index from 'inside' bits

• Look up topological state using index

– Gives set of edges intersected by contour

• Calculate contour location using interpolation for edges
in the intersection set

r = (C - f (0)) / (f (1) - f (0))

• Notes:
• Interpolate in the same direction for each edge

– Otherwise round-off non-coincident points

• Boundaries: duplicate edges & vertices may be created

– Eliminate with coincident point-merging operation

C is the desired
contour value

CITS4241 - Lectures 5 & 6 19

Marching Squares - Ambiguities

• Cases five (0101) and ten (1010) are ambiguous

• Two possible contours

• In 2D, choose either one

0000

0 1

23

0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

CITS4241 - Lectures 5 & 6 20

Marching Squares - Ambiguities

• Two possible contours

• In 2D, choose either one

• Either acceptable

• Resulting contour lines will be continuous or closed
or end at dataset boundary

1010 1010

Break contour Join contour

Marching	Squares	
To	draw	a	contour:	
1. For	each	cell,	compute	the	inside/outside	state	of	
each	vertex	given	the	implicit	function,	e.g.,	f (x,y)=7	

2. Generate	an	index	from	the	lower	left	vertex,	ccw,	
e.g.,	0010

3. Look	up	topological	state	to	determine	contour	
“type”	

4. Place	contour	on	edges	by	interpolating	between	the	
values	of	its	two	vertices,	e.g.,	7	between	(6, 9)

5. Contour	plot	can	be	generated	by	“marching”	
through	the	grid,	left	to	right,	top	to	bottom	(with	
additional	details	.	.	.)	

Lorensen&Cline87	

6 6

7 9

5

CITS4241 - Lectures 5 & 6 17

Marching Squares

• Let's work out the possibilities:

Point above contour
(index bit = 1)

0000

0 1

23

0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

CITS4241 - Lectures 5 & 6 18

Marching Squares

• Algorithm
• Select a cell

• Calculate inside/outside state of each vertex

• Generate topological state index from 'inside' bits

• Look up topological state using index

– Gives set of edges intersected by contour

• Calculate contour location using interpolation for edges
in the intersection set

r = (C - f (0)) / (f (1) - f (0))

• Notes:
• Interpolate in the same direction for each edge

– Otherwise round-off non-coincident points

• Boundaries: duplicate edges & vertices may be created

– Eliminate with coincident point-merging operation

C is the desired
contour value

CITS4241 - Lectures 5 & 6 19

Marching Squares - Ambiguities

• Cases five (0101) and ten (1010) are ambiguous

• Two possible contours

• In 2D, choose either one

0000

0 1

23

0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

CITS4241 - Lectures 5 & 6 20

Marching Squares - Ambiguities

• Two possible contours

• In 2D, choose either one

• Either acceptable

• Resulting contour lines will be continuous or closed
or end at dataset boundary

1010 1010

Break contour Join contour

6 6

7 9

Marching	Squares	Ambiguities	
Ambiguous	labels	can	result	in	different	contours	
	
Disambiguate	by	
subdivision:	
	
	
	
	
Straddling	cells:	at	least	one	vertex	
inside	and	one	outside	surface	
•  non-straddling	cells	can	still	contain	contour	

Lorensen&Cline87	

Marching	square	extended	to	3D

Used	to	create	isosurfaces	
(contours	in	3D)	
	
Contour	passes	through	a	cell	in	
one	of	15	topological	states:	

Marching	Cubes	

Lorensen&Cline87	

•	
�	
inside	
outside	

To	render	an	implicit	surface:	
1.  put	object	inside	a	3D	grid	of	cells	

2.  each	vertex	of	a	cell	is	either	>	or	<	
the	value	of	the	isosurface	at	that	cell	

3.  classify	each	cell	into	one	
of	the	15	topological	states	

4.  interpolate	edge	intersection	
from	vertex	values	

5.  build	connectivity	
6.  be	careful	with	correct	orientation	of	

surface	normal	and	state/label	ambiguity	

Marching	Cubes	

TP3	

