
EECS	487:	Interactive	
Computer	Graphics	
Lecture	39:	
•  (B-spline)	Subdivision	and	surfaces	

Durand,James	

Subdivision	Surfaces	
How	do	you	render	a	smooth	surface?	
• start	with	a	polygonal	control	mesh	
• cut	corners	to	smooth:	recursively	subdivide	
into	larger	and	larger	number	of	polygons	
by	adding	new	vertices/faces	
• the	limit	surface	is	smooth	
• mesh	representation	must	enable	efficient	
implementation	of	subdivision	rules	

Subdivision	Surfaces	
Generate	smooth	surfaces	from	a	given	polygonal	
mesh	(polyhedron)	with	guaranteed	continuity	
• can	handle	meshes	of	arbitrary	topology	
•  implementation	and	application	is	straightforward	and	
intuitive	
• analysis	of	continuity	is	mathematically	involved	

Originally	extensions	of	B-spline	surfaces	
• Doo-Sabin	scheme	produces	quadratic	B-spline	surfaces	
• Catmull-Clark	scheme	produces	cubic	B-spline	surfaces	
• Loop	subdivision	generalizes	quartic	box-spline	

[TP3,	Bischoff&Kobbelt]	

Subdivision	Concepts	
Start	with	initial,	discrete	representation	
•  control	points,	line	segments	(for	curves),	
polygons	(for	surfaces)	

	
Repeated	application	of	subdivision	rules	
to	make	smoother	surface	
•  topological	splitting/refinement:	how	to	add	vertices	
•  smoothing/averaging:	where	to	place	vertices	
•  special	treatment	of	extraordinary	vertices	and	
surface	boundaries	

	
Limit	surface	(or	curve)	
•  the	“mathematical”	result	after	infinite	refinements	

Gleicher,	Funkhouser,	



Smoothing	

A	set	of	scalars	mi,	1≤ i ≤ n, applied	to	a	set	of	n	
vertices	vi	to	generate	a	new	vertex	w:	

TP3,	Gleicher,	Funkhouser,	
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Interior	and	Boundary	Vertices	
Interior	vertices:	
• for	a	closed	polyhedron	all	vertices	are	
interior	vertices	
• an	epsilon	neighborhood	is	
homeomorphic	to	a	closed	disk	

	
Boundary	vertices:	
• vertices	that	make	up	the	“skirt”	of	a	
polyhedron	
• an	edge	linking	2	boundary	vertices	is	
always	shared	by	one	face	of	the	
polyhedron	

Hart/Carr	

Ordinary	and	Extraordinary	Vertices	

triangular	mesh	
valence	6

quad	mesh	
valence	4

Valence/degree	of	a	vertex:	number	of	
edges	incident	to	vertex	
• most	schemes	have	an	“ideal”	valence	for	
which	the	limit	surface	converges	to	a	spline	
surface,	except	at	extraordinary	vertices	

	
Extraordinary	vertices	have	different	
valence	than	ordinary	vertices	
• subdividing	a	mesh	does	not	add	nor	
remove	extraordinary	vertices	
• make	up	rules	for	extraordinary	vertices	
to	keep	the	surface	“smooth”,	though	at	
lower	degree	of	continuity	

Hart/Carr	

Subdivision	Curves	

Curless	

Start	with	a	piecewise	linear	curve	
	
Chaikin’s	algorithm	(1974):	
•  refinement:	insert	new	edge	
vertex	midpoint	on	each	edge	

•  smoothing:	average	each	vertex	
with	the	clockwise	neighbor	

•  repeat	



Let	initial	vertices	on	control	polygon	be	vi

Vertices	at	refinement	level	j	are	vi
j,	thus	vi = vi

0

1.  refinement:	insert	new	midpoint	(mi
j+1)	vertex	on	each	edge	

2.  smoothing:	average	each	vertex	with	the	clockwise	
neighbor	to	create	new	vertex	point	(								):		

3.  averaging	mask:	(3 1)	
(also	written	as	(0 ½ ½)	
for																																									)	

4.  continue	on	next	slide	.	.	.	

Chaikin’s	Curve	Subdivision	

TP3,	Curless	
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4.  apply	averaging	masks:	replace	each	vertex	vi
j	with	2 vertices	

using	the	averaging	masks	(3 1)	and	(1 3):	

	
	

5.  connect	all	new	vertex	points	to	form	refined	curve	
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j

Chaikin’s	Curve	Subdivision	

TP3,	Curless	
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Chaikin’s	Curve	Subdivision	

TP3	

Resulting	curve	is	a	uniform	quadratic	B-spline	
Introduces	a	new	vertex	for	each	face	at	the	midpoint	
between	an	old	vertex	and	face	centroid	
	
	
	
	
	
	
	
Subdivision	rules	create	a	dual	of	the	
control	net:	a	new	face	replaces	each	
face,	edge,	and	vertex	of	the	control	net	

Doo-Sabin	Subdivision	



Doo-Sabin	Subdivision	
A	generalization	of	quadratic	curve	subdivision	
(Chaikin’s	algorithm)	to	surfaces	with	arbitrary	
topology	

Doo-Sabin	Subdivision	
For	regular	quad	meshes,	resulting	surface	
is	a	biquadratic	B-spline	surface	

http://www.ke.ics.saitama-u.ac.jp/xuz/pic/doo-sabin.gif	

Cubic	B-spline	Curve	Subdivision	

TP3	

1.  For	each	edge	compute	a	new		edge	point	using	the	
averaging	mask	(1 1):	

2.  Compute	new	vertex	points	using	the	mask	(1 6 1):	
	

3.  Connect	the	new	edge-	and	vertex	points;	resulting	
curve	is	a	uniform	cubic	B-spline	
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Cubic	B-spline	Curve	Subdivision	
Vertex	points	are	midpoint	between	

	(midpoints	between	
	 	(old	vertices	and	new	edge	points))	

[Hart]	

averaging	mask	(1 6 1) of	only	old	
vertices,	or	also	given	as		(¼ ½ ¼)	
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Subdivision	�	New	Control	Points	

[Hart]	
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Uniform	B-spline	Patch	Subdivision	

[O’Brien]	

3D perspective	view	orthographic	top-down	view	
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Subdivision	Reparameterized	

[O’Brien]	

s11(u,v) = 1 u u2 u3⎡
⎣

⎤
⎦BSP11BS

T 1 v v2 v3⎡
⎣

⎤
⎦

T

P11 = HS1PHS1
T

3D perspective	view	orthographic	top-down	view	

new	control	points!	

Limit	of	Subdivision	

[O’Brien]	

Control	mesh	
approaches	surface	

Limit	of	subdivision	
is	the	surface	



New	Control	Points	

[O’Brien]	
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in	this	parametric	view	these	
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Subdivision	�	New	Control	Points	

[O’Brien,	Hart/Carr]	
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Subdivision	as	a	matrix	HS	of	weights	w:	
• HS	is	very	sparse	
• limit	surface:		
• allows	for	analysis:	curvature,	limit	surface	
• not	for	implementation!	

HS:	25×16	subdivision	matrix	
Pj:	vector	of	coarse	control	points,	length	16
Pj+1:	vector	of	coarse	control	points,	length	25

P∞ = lim
j→∞

HS( ) j P
power,	not	
superscript	

New	Control	Points	

[O’Brien]	

Instead,	compute	the	
new	control	points	
iteratively:	

face	points	

edge	points	

moved	vertex	points	
	

Face	point:	

	
	
Edge	point:	
	
	
	
	
	
	
	
Note																		not	defined/used	

New	Control	Points	
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Catmull-Clark	Subdivision	Rules	
Subdivision	level	j+1:	
•  face	point:	for	each	face,	add	a	new	vertex	at	its	centroid	
that	is	the	average	of	the	surrounding	m	vertices:	

	

•  edge	point:	for	each	edge,	add	a	new	edge	point	which	is	the	
average	of	the	2	vertices	and	the	2	face	points	adjacent	to	
the	edge:	

	
• moved	vertex	point:	vertex	moved	to	the	weighted	average	
between	the	original	position,	the	n	midpoints	(not	edge)	
points	and	the	n	face	points	surrounding	the	vertex	(n:	
vertex	valence,	=4):	
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Subdivision	level	j+1:	

[not	to	scale]	

Catmull-Clark	Subdivision	
Works	with	arbitrary	polygonal	mesh:	
after	1st	round	of	subdivision,	
• all	faces	are	quads	
• the	number	of	extraordinary	points	
remains	constant	
•  distances	between	them	remain	constant:	as	
faces	become	smaller,	there	are	more	faces	
between	them	

[CatmullClark]	



Catmull-Clark	Subdivision	

non-quad	face	

extraordinary	
vertex	

Subdivision	rules	are	chosen	to	improve	continuity	

Smoothness	of	limit	surface:	
• C2	almost	everywhere	
• C1	at	extraordinary	vertices	
• strictly	generalize	uniform	tensor-product	bicubic	B-splines:	
works	with	existing	tools	for	tensor-product	B-splines	
• generalization	of	cubic	B-splines	subdivision	to	irregular	patch:	

[CatmullClark]	

Catmull-Clark	Subdivision	

Relationship	to	control	mesh:	
• does	not	interpolate	control	mesh	
• within	convex	hull	

Subdivision	rules	creates	a	primal	
(not	dual)	of	the	control	net	

Quads	are	often	better	than	
triangles	to	represent	real	objects	
that	are	often	symmetric,	e.g.,	
tube-like	surfaces:	arms,	legs,	
fingers	

[CatmullClark,DeRoseKassTruong]	

Catmull-Clark	Subdivision	
Any	mesh	can	be	subdivided	
• cut	holes,	create	unusual	topology,	stitch	pieces	together	
• no	matter	how	complicated	the	mesh,	
it	will	lead	to	a	smooth	surface!	

	
Extensions:	localized	subdivision	rules	
• creases:	NURBS	requires	use	
of	trim	curves;	for	subdivision,	
just	modify	the	subdivision	mask	
• edge	preservation:	hard	edges	
• adaptive	subdivision	

Curless	

Edge	Preservation	
To	get	sharpness	and	creases,	define	new	subdivision	rules	for	
“creased”	edges	and	vertices	
•  crease:	a	smooth	curve	with	continuity	G0	on	the	surface	(2	sharp	edges)	
•  corner:	a	vertex	where	≥	3	sharp	edges	meet	
•  dart:	a	vertex	where	a	crease	ends	and	
smoothly	blends	into	the	surface	(1	sharp	edge)	

	
compared	to:	

Loop87

Hoppe94

crease	corner	

dart	

Funkhouser,	Zhang	



Sharp	Edges	

Hart/Carr	

j = 0 j = 4 j = 4
Idea:	edges	with	a	sharpness	j	are	
subdivided	using	sharp	rules	for	the	
first	j	iterations,	and	then	smoothly,	
as	usual,	to	the	limit	surface	

•  tag	edges	as	sharp	or	not	sharp:	
newly	created	edges	are	assigned	
a	sharpness	of	j–1
•  edges	with	j = 0	are		not	sharp	
•  edges	with	j > 0	are	sharp	
	
During	subdivision,	if	an	edge	is	not-sharp	use	normal	smooth	
subdivision	rules;	if	an	edge	is	sharp,	use	sharp	subdivision	rules	
	
Approximating	subdivision	algorithm	can	be	made	interpolating	

#	of	adjacent	
sharp	edges	

corner:	
	
> 2

crease:	
	

    2

dart:	 1

Sharp	Rules	
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edge	point	

moved	vertex	
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Subdivision	level	j+1:	

Hart	

Compare	non-sharp	rules:
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Subdivision	Surfaces	
Scheme	classification	by:	
•  interpolating	or	approximating	
• mesh	type:	quads,	triangles,	
hex,	…,	combination	
•  subdivision	by	face	split	(primal)	
or	vertex	split	(dual)	
• B-spline	order	of	limit	surface	
•  smoothness	
	
Algorithms:	

[Narasimhan,	Zorin&Schroeder,	Bischoff&Kobbelt]	

Doo-Sabin	 ’78 approximate	 C1	 quad	 dual	

Catmull-Clark	 ’78 approximate	 C2	 quad	 primal	

Loop	 ’87 approximate	 C2	 triad	 primal	

DLG	midpoint	 ’87 approximate	 C2	 quad	 dual	

Butterfly	(mod)	 ’90,  ’96 interpolate	 C1	 triad	 primal	

Kobbelt	 ’96 interpolate	 C1	 quad	 primal	

√3	 ’00 approximate	 C2	 triad	 dual	

Dual	
	
	
	
	
	
	
	
	
	
	
Refinement	

Named	after	Charles	Loop	

Start	with	a	triangular	mesh	

Resulting	surface	is	a	generalization	of	
three-direction	quartic	box-spline	

Subdivision	rules:	
• refinement:	break	edges	at	midpoint,	for	both	faces	
• smoothing:	different	averaging	masks	for	new	
(“odd”)	and	old	(“even”)	vertices	

Loop	Subdivision	



Loop	Subdivision	Masks	
New	(“odd”)	vertices	are	placed	based	on	
weighted	average	of	old	vertices	on	both	faces	

Old	(“even”)	vertices	are	moved	based	on	
surrounding	neighbors	
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8
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Odd	mask:	

1
16
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16

1
16

1
16

1
16

1
16

1
16

Even	mask:	

Zorin,	Carr	

Loop	Subdivision	Masks	

For	ordinary	vertices	inside	mesh:	

	
	
	
	
For	extraordinary	vertices	and	boundaries:	

Odd	mask:	 Even	mask:	

2
1

2
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8
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8
16

8

Odd	mask:	 Even	mask:	

Loop	Subdivision	
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How	to	choose	β ?	
• must	ensure	tangent	plane	or	normal	
continuity	(G1)	of	limit	surface	
•  involves	calculating	eigenvalues	of	matrices	
	
Original	Loop:	

	
	

	Warren:	

Loop	Subdivision	
Approximating	subdivision	
•  does	not	interpolate	the	control	mesh	
•  within	convex	hull	

•  in	the	limit	a	smooth	surface	
•  C2	almost	everywhere	
•  C1	at	extraordinary	vertices	(valence	≠ 6)	

…	



Starts	with	a	triangle	mesh	
	
Number	of	faces	triples	per	iteration	
• slower	growth	rate	
	
Gives	finer	control	over	polygon	count		
• better	for	adaptive	subdivision	

√3	Subdivision	Scheme	

Funkhouser	

Not	all	regions	of	a	model	must	be		
subdivided	to	the	same	resolution		
• may	be	due	to	limited	triangle	budget	
	
Stop	subdivision	at	different	levels	
across	the	surface,	depending	on:	
•  local	surface	curvature	
•  projected	screen	size	of	triangles	
•  view	dependence		
•  distance	from	viewer	
•  silhouettes	
•  in	view	frustum	

•  careful	to	avoid	“cracks”!	

Adaptive	Subdivision	

Funkhouser,	Carr,	Hoppe	 10,072	triangles	 228,654	triangles	

Crack	avoidance:	replace	incompatible	
coarse	triangles	with	triangle	fan	

Balanced	subdivision:	neighboring	subdivision	
levels	must	not	differ	by	more	than	one	

Unbalanced 	Balanced	

Balanced	Subdivision	

Funkhouser,	Kobbelt	

Subdivision	Surfaces	
Characteristics	and	advantages:	
•  one	surface,	not	a	patchwork	(collection	of	patches)	
•  no	seams,	can	deform/animate	geometry	without	cracks	
•  guaranteed	continuity	(smooth	at	boundaries)	
•  arbitrary	control	mesh,	not	limited	to	quads	
•  can	make	surfaces	with	arbitrary	topology	or	connectivity	
•  simple,	only	need	subdivision	rule	
•  adaptive	subdivision:	areas	of	surface	with	
higher	curvature	can	be	more	finely	subdivided	
•  multiresolution:	LoD,	scalable	
•  local	support:	only	look	at	nearby	vertices	
•  numerical	stability,	well-behaved	meshes	
•  affine	invariance	
•  efficient	rendering	

Funkhouser,	Durand,	Schulze	



Subdivision	Surfaces	
Disadvantages:	
•  non-intuitive	specification:	it’s	a	procedural	definition	
•  non-parametric,	not	implicit:	hard	to	parameterize	
•  no	global	(u, v)	parameters	
•  hard	to	compute	intersections	
•  tricky	at	special	vertices	(those	with	more	
or	less	than	6	neighbors	in	a	triangular	mesh)	

Funkhouser,	Durand	

Parametric	vs.	Subdivision	Surfaces	

Gleicher	

Parametric	B-splines	
• smooth	
• must	be	tessellated	
•  sampling	issues	
•  triangle	size	issue	
•  cracking	concern	
• have	uniform	resolution	
•  detail	must	be	global	
• require	regular	grid	
• complex	topology	hard	
•  no	corners,	holes	
•  trimming	hard	
•  stitching	hard	
•  creases	and	sharp	edges	hard	
• (u, v)	parameterization	
•  but	not	controllable	

Subdivision	
• limit	surfaces	are	smooth	
• gives	meshes	
•  subdivide	as	needed	
•  always	connected	
•  get	as	many	poly	as	you	need	
• put	details	where	needed	
•  detail	is	multiresolution	
• works	with	arbitrary	mesh	
• any	topology	can	be	handled	
•  easy	to	make	corners,	holes	
•  trimming	easy	
•  stitching	easy	
•  creases	and	sharp	edges	easy	
• (u, v)	parameterization	
•  by	subdivision	of	points	
•  controllable	


