
EECS	487:	Interactive	

Computer	Graphics	

Lecture	38:	
•  Tensor-product	surfaces:	Bézier	and	B-spline	
•  Bézier	subdivision	curves	and	surfaces	

Parametric	Surfaces	

Our	discussions	on	parametric	cubic	curves	can	

be	generalized	to	parametric	bicubic	surfaces:	

• parametric	curves	�	parametric	surfaces	

• splines	�	parametric	patches	

• control	polygon	�	control	net	

Teapot	specified	with	Bézier	patches	

control	net	

Bézier	patches	

A	surface	is	a	curve	swept	through	space	

Instead	of	control	points	along	a	curve,	

make	each	control	point	itself	a	curve	

	

	

	

	

	

Parametric	patches:	as	with	long	curves,	large	surfaces	

are	partitioned	into	piecewise	parametric	patches	

•  choice	of	different	splines:	type,	order,	etc.	

Farin	

Parametric	Surfaces	and	Patches	

O’Brien,	James	

Bilinear	Patch	

James,	Schulze	

Simplest	case:	4	points,	cross	product	of	2	linear	segments	

• basis	function	is	a	3D	tent:	interpolates	control	points	

•  if	all	4	control	points	are	co-planar,	the	patch	is	flat	

q0 = p00 + u p10 − p00( )
= (1− u)p00 + up10

q1 = (1− u)p01 + up11
s(u,v) = x = (1− v)q0 + vq1

r0 = (1− v)p00 + vp01
r1 = (1− v)p10 + vp11

s(u,v) = x = (1− u)r0 + ur1

b0(u)        b1(u) 
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Bilinear	Patch	

Schulze	

s(u,v) = x = (1− v)q0 + vq1 = (1− v) (1− u)p00 + up10[ ]+ v (1− u)p01 + up11[ ]
s(u,v) = x = (1− u)r0 + ur1 = (1− u) (1− v)p00 + vp01[ ]+ u (1− v)p10 + vp11[ ]
s(u,v) = x = p00 + u(p10 − p00 )+ v(p01 − p00 )+ uv(p00 − p10 − p01 + p11)

= (1− u)(1− v)p00 + u(1− v)p10 + (1− u)vp01 + uvp11
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q0 = p00 + u p10 − p00( )
= (1− u)p00 + up10

q1 = (1− u)p01 + up11
r0 = (1− v)p00 + vp01
r1 = (1− v)p10 + vp11

Outer/Tensor	Product	

Tensor	product	(⊗)	of	two	column	vectors, u⊗v = uvT

	

	

	

	

	

	

	

	

Similarly,	we	can	define	a	surface	as	the	tensor	(a.k.a.	

Cartesian)	product	of	two	curves	…	

Durand	
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Bilinear	Patch	as	Tensor	Product	

To	compute	s(u,v)	for	u1,	u2	and	v1,	v2:	

	

	

	

	

	

	

	

Tensor	product:		
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Bilinear	Patch	as	Tensor	Product	

To	compute	s(u,v)	for	u1,	u2	and	v1,	v2:	

	

	

	

	

	

	

	

	

Tensor	product:		
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ij
∑ 	where	bij (u,v) = bi (u)bj (v)
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Note	the	ordering	of	the	i	and	j	
indices	on	the	control	points	to	

get	the	correct	matching	with	

the	basis	functions	



Bilinear	Patch	

James,	Schulze	

Smooth	version	of	quadrilateral	with	non-planar	vertices	

• gives	a	saddle-shape	(hyperbolic	paraboloid)	curved	surface	
• the	parametric	curves	are	all	straight	line	segments!	

•  the	surface	is	doubly	ruled:	2	straight	lines	through	every	point	
•  boundaries	are	straight	line	segments:	no	control	of	derivatives	at	the	edges	

• not	a	terribly	useful	modeling	primitive	for	smooth	surfaces	

Bicubic	Patch	

Bicubic	patch	s(u,v)	is	the	tensor	product	of	2	cubic	
curves,	with	16	unknowns	

The	control	points	of	the	2	cubic	curves	form	a	

control	net	with	16	control	points,	from	which	we	

can	solve	for	the	16	unknowns	

Funkhouser,	Watt	Fig.	6.21	

s(u,v)

s(0,0)

s(1,0)

s(0,1)
s(1,1)

u

v

u

v

Given	parametric	curves	

fj(u) = uBpij,	0≤i≤3	and	
gi(v) = vBpij,	0≤j≤3,	
where	B	is	the	basis	

matrix	(e.g.,Bézier,	

B-splines,	etc.)	

	
	
	

To	compute	the	tensor	product	of	surface,	transpose	

each	i-th	curve	(gi (v))T = (vBpij)T = pij
T BT vT

Bicubic	Patch	

p00 

p01 

p11 

p22 

p12 p13 

p02 

p03 
p10 

p21 

p20 

p23 
p33 p32 

p31 

p30 

j i 

g0(v) 

g1(v) 

g2(v) 
g3(v) 

g0(½) 

g1(½) 

g2(½) 
g3(½) 

s(u,½) 

u
v

control	net	 control	curves	in	v

control	polygon	at	v=½�
(not	fj(u),	which	is	smooth)	

surface	at	s(u,½)�
(again	not	fj(u),	
which	is	not	shown)	

The	tensor-product	surface	in	matrix	form	is:		

	

	

	

	

	

	

	

are	separable	products	of	

the	1D	curve	basis	functions	

	

Note	again	that	the	ordering	of	the	i	and	j	indices	of	the	control	points	
must	match	those	of	the	basis	functions	

Bicubic	Patch	

	

s(u,v) = uB
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∑ 	where	bij (u,v) = bi (u)bj (v),



Bézier	Patches	

Durnad,Watt,	FvD,	Hearn&Baker	

Tensor	product	of	2	Bézier	segments	

	

Biquadratic:	

	

	

Bicubic:	

Basis	functions	of	patch:	

product	of	2	Bernstein	
polynomials:	

b0(u)b0(v), …, b3(u)b3(v)

Bicubic	Bézier	Patches	

In	matrix	form:	

Cheng	

s(u,v) = uBZ

p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

BZ
TvT

= 1 u u2 u3⎡⎣ ⎤⎦

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

p00 p01 p01 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
v
v2

v3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Order	3×4	Bézier	Patches	

[Sederberg]	

Tensor	product	of	

quadratic	(gi(v))	
and	cubic	(fj(u))	
Béziers	

f0(u) 

f1(u) 

f2(u) 

f0(u) 

f1(u) f2(u) 

s(u=c,v) 

g0(v) 

g1(v) 

g2(v) 

g3(v) 
s(u,v=c) 

g0(v) 

g1(v) 

g2(v) g3(v) 

u 
v 

Bicubic	Bézier	Patches	

Durnad,Watt,	FvD	Fig.	11.43	

Properties	analogous	to	those	of	cubic	Bézier	curves	

•  interpolate	four	corner	points	
• tangency	at	corners	
• convex	combination	

• affine	invariant	

•  local	control	
• C1

�

Only	variation	diminishing	doesn’t	apply!	



Surface	Normal	

Tangents	to	the	surface	at	any	

point	can	be	computed	from	

infinitesimally	nearby	points	

Holding	one	parameter	constant,	we	compute	the	

partial	derivative	(tangent	vector)	in	each	direction	

	Unit	normal:	

Yu,Curless,Chenney	
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∑
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tu × tv

u

v

(and	similarly	for	the	other	boundaries,	in	the	v	and	u	directions)	

Bicubic	Bézier	Patch	Join	

Watt	00	

C0:	positional	continuity 	C1:	tangential	continuity	

requires	aligning	boundary	curves 	requires	aligning	boundary	

	curves	and	derivatives	

Bézier	Curve/Surface	Problems	

To	make	a	long	continuous	curve	with	Bézier	

segments	requires	using	many	segments	

Maintaining	continuity	requires	constraints	on	the	

control	point	positions	

•  the	user	cannot	arbitrarily	move	control	vertices	and	

automatically	maintain	continuity	

•  the	constraints	must	be	explicitly	maintained	

•  it	is	not	intuitive	to	have	control	points	that	are	not	free	

Consider:	B-spline	

B-spline	Patches	

Generated	as	tensor	

product	of	B-spline	curves	

	

All	properties	of	B-spline	

curves	apply,	except	for	

the	VD	property	

• C d−1	“for	free”	for	B-splines	of	degree	d
•  linear	B-splines	have	C 0	continuity,	cubic	have	C 2,	etc.	

[Culess,Watt00]

u v



Trimmed	NURBS	Surfaces	

Sometimes	we	want	“holes” in	the	surface	

We	can	do	this	by	trimming	the	u-v	domain	

• define	a	closed	curve	(a	trim	curve)	on	the	NURBS	surface	

• draw	the	surface	everywhere	except	inside	this	curve	

Continuity	in	these	regions	hard	to	maintain,	

especially	in	animation	

Curless,	Merrell	

Parametric	Surface:	Advantages	

Parametric	curves	and	surfaces	are	generalization	of	

piecewise	linear/first	degree	polylines	and	polygons	

• higher	degree	polynomials	are	piecewise	smooth	

	

These	functions	still	only	approximate	the	desired	

shapes,	but	advantages:	

•  easy	to	construct	and	manipulate	from	control	points	

•  easy	to	enumerate	points	on	surface	

•  useful	for	texture	mapping!	

• much	more	compact	than	polygonal	mesh	(less	storage)	

•  scalable	geometric	primitives	

Texture	Mapping	

Mapping	for	parametric	surfaces	is	easy:	

map	surface	parameters	directly	to	texture	

coordinates:	u → s,	v →	t

Wolfe97	

Parametric	Surface:	Disadvantages	

Disadvantages	of	approximate	surfaces:	

•  control	net	must	have	specific	topology	

•  tensor	product	surfaces	require	
control	points	to	form	a	quad	

•  for	B-spline	surfaces,	control	points	
must	be	distributed	relatively	“uniformly”	

• must	split	surface	into	discrete	patches	

• works	well	mostly	for	smooth	surfaces	

Other	disadvantages:	

•  intersection	test?		inside/outside	test?	
•  higher	rendering	times	than	polygonal	mesh:	

•  patch	must	be	tessellated	into	triangles	

• may	need	adaptive	subdivision	

[Funkhouser,	Hodgins,	Durand,	James]	



Adaptive	Subdivision/Tessellation	

When	rendered	as	polygonal	mesh:	

•  test	patch	for	flatness	

•  if	not	flat	enough,	subdivide	patch	along	
each	of	the	two	dimensions	into	four	parts	

•  recurse	
•  as	with	curves,	use	convex	hull	property	for	

termination	testing	(see	3	slides	forward)	

Cracks	(discontinuity)	may	form	

between	patches	of	different	degrees	

of	tessellation	

•  solution:	split	shared	edge	at	both	faces,	
no	T-junction	

[Funkhouser,	Hodgins,	Durand,	James]	

flat	 not	flat	

crack	

Smooth	Surfaces	

How	do	you	get	smooth	surfaces?	

	

Tensor	product	surfaces:	piecewise	parametric	patches	

•  bicubic	Bézier	patches:	manual	C1	continuity	

•  bicubic	B-splines,	NURBS:	built-in	C2	continuity	

	

General,	mathematically	elegant,	but	problematic	

•  control	mesh	dictates	surface	feature	size	

•  control	mesh	must	be	rectangular	

•  refinement	constant	across	u	and	v	directions	
•  same	level	of	detail	throughout	surface:	non-adaptive	

•  hard	to	make	creases	and	sharp	edges	

•  surface	must	be	tessellated	to	be	rendered:	cracking	issue	

Gleicher	

Subdivision	

How	do	you	render	a	smooth	curve?	

Approximate	the	curve	as	a	series	of	line	segments	

Subdivision	scheme:	a	process	of	recursively	

subdividing	the	polylines	into	smaller	pieces	

(finer	resolution)	

•  the	resulting	limit	curve	will	be	piecewise	smooth	

Hart/Carr	

Refinement	1 Refinement	2 Refinement	∞

Bézier	Curve	Subdivision	

de	Casteljau	algorithm	easily	and	adaptively	

subdivide	a	Bézier	curve	into	smaller	segments	

• control	polygon	has	sharp	corners	(non-smooth)	

• smooth	out	this	curve	by		“cutting	off”	the	sharp	corners	

• using	the	new	control	point(s),	split	the	curve	into	two	

• continue	to	smooth	out	and	subdivide	until	the	limit	

curve	

Fussell,	Shirley,	TP3	



Given	a	Bézier	curve	with	n+1	control	points:	
p0, p1, p2, ..., pn	on	u ∈ [0, 1],	use	de	Casteljau’s	
algorithm	to	compute	two	sets	of	n+1	control	
points	q0, q1, q2, ..., qn	and	r0, r1, r2, ..., rn	such	that:	

• qi's	form	the	control	polygon	of	

the	original	Bézier	curve	on	u ∈ [0, ½]

• ri's	form	the	control	polygon	of	

the	original	Bézier	curve	on	u ∈ [½, 1]

Bézier	Curve	Subdivision	

Shirley,	Manocha	

 
P1
T = q0 q1 q2 ! qn⎡

⎣
⎤
⎦

 
P2
T = r0 r1 r2 ! rn⎡

⎣
⎤
⎦

u∈ 0…1⎡⎣ ⎤⎦

 u ∈ 0… 1
2⎡⎣ ⎤⎦  u ∈

1
2…1⎡⎣ ⎤⎦

p1 

p2 

p0 p3 
q0 

q1 

q2 
q3 

r0 

r1 

r2 

r3 

Reparameterized	

For	u ∈ [0, 1],	Bézier	curve’s	canonical	form	is:		

f (u) = 1 u u2 u3⎡
⎣

⎤
⎦BZP

 u ∈ 0… 1
2⎡⎣ ⎤⎦  u ∈

1
2…1⎡⎣ ⎤⎦

 u ∈ 0…1⎡⎣ ⎤⎦  u ∈ 0…1⎡⎣ ⎤⎦

[O’Brien]	

For	u ∈ [0, ½]	and	u ∈ [½, 1],	
want	to	retain	canonical	form:	

	

	

with	u	reparameterized	to	∈ [0, 1]

Both	u	and	B	can’t	be	changed,	

so	much	change	P,	to	what?	

f1(u) = 1 u u2 u3⎡
⎣

⎤
⎦BZP

f1(u)

reparameterized	

p1 

p2 

p0 p3 

p0 

Subdivision	Reparameterized	

 	

For	u ∈ 0… 1
2[ ] :

f1(u) = 1 u u2 u3⎡
⎣

⎤
⎦BZP

reparameterized	to	u 	 ∈	 0…1[ ] :
f1(u) = 1 1

2 u 1
4 u

2 1
8 u

3⎡
⎣

⎤
⎦BZP

f1(u) = 1 u u2 u3⎡
⎣

⎤
⎦S1BZP

S1 =

1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

[O’Brien]	

p1 

p2 

p3 

reparameterization	

matrix	

BZ
−1 =

1 0 0 0
1 1

3 0 0
1 2

3
1
3 0

1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

New	Control	Points	

[O’Brien]	

a.k.a.	the	

splitting	matrix	

p1 

p2 

p0 
p3 

f1(u) = 1 u u2 u3⎡
⎣⎢

⎤
⎦⎥
S1BZP

f1(u) = 1 u u2 u3⎡
⎣⎢

⎤
⎦⎥
BZBZ

−1S1BZP

f1(u) = 1 u u2 u3⎡
⎣⎢

⎤
⎦⎥
BZHZ1P

HZ1 =

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f1(u) = 1 u u2 u3⎡
⎣⎢

⎤
⎦⎥
BZP1

P1 = HZ1P = q0 q1 q2 q3⎡
⎣

⎤
⎦
T



Subdivision	�	New	Control	Points	

S2 =

1 1
2

1
4

1
8

0 1
2

1
2

3
8

0 0 1
4

3
8

0 0 0 1
8

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

[O’Brien]	

p1 

p2 

p0 
p3 

f2 (u) = 1 u u2 u3⎡
⎣

⎤
⎦BZP2

P2 = HZ 2P = r0 r1 r2 r3⎡
⎣

⎤
⎦
T

HZ 2 =

1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Bézier	Patch	Subdivision	

s(u,v) = 1 u u2 u3⎡
⎣

⎤
⎦BZPBZ

T 1 v v2 v3⎡
⎣

⎤
⎦

T

P =

p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p23 p33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Bézier	patch:	

P2⋅ = HZ 2P
[O’Brien]	

new	control	points!	

Bézier	patch	subdivisions:	

P21 = HZ 2PHZ1
T

Subdividing	Bézier	Curves	

Subdivision	doesn’t	change	the	shape	

of	a	Bézier	curve	

• asymptotically,	the	control	polygons	of	the	

subdivided	curve	converge	to	the	actual	

curve	(at	a	quadratic	rate)	

	

Other	uses	of	subdivision:	

•  collision/intersection	detection	
•  the	union	of	convex	hulls	of	the	subdivided	curve	is	
a	subset	of	the	convex	hull	of	the	original	curve	

•  recursive	search	
• good	for	curve	editing	and	approximation:		

•  local	refinement:	change	the	control	point(s)	of	

one	of	the	subdivided	curve	

Manocha,	Durand	

Rendering	Bézier	Curves	

How	do	you	rasterize	a	Bézier	curve?		

• generally	no	low-level	support	for	drawing	curves		

•  can	only	draw	line	segments	or	individual	pixels	

de	Casteljau	algorithm	easily	and	adaptively	

subdivide	a	Bézier	curve	into	smaller	segments	

•  continue	to	subdivide	until	the	new	control	points	are	close	

to	being	collinear,	then	approximate	with	a	straight	line	

•  collinearity	test:	distance	of	control	point	pi	from	the	line	

through	p0	and	pn:	

Fussell,	Shirley,	TP3	

   
d =

(pn − p0 )× (pi − p0 )
pn − p0

= pi − p0 sinθ

p0 pn 

pi 

θ
d



Converting	Spline	Representations	

All	the	cubic	splines	are	equivalent	(span	the	same	space):	

f(u) = ua = uBp
where:	

u	is	the	canonical	basis	set,	
B	the	basis	matrix,	and	

p	the	control	points	
	

To	use	a	different	spline	is	to	change	basis	matrix:	

f(u) = ua = uBp = u (Balt Balt
−1) B p �

= u Balt (Balt
−1 B p) = u Balt palt

we	transform	the	control	points	from	one	type	to	the	

other:	palt = Balt
−1 B p	

Marschner	

Other	curve	

representations	can	

be	converted	to	

Bézier	for	rendering!	

Rendering	Curves	

Other	curve	representations	

can	be	converted	to	Bézier	

for	rendering	

	

Catmull-Rom	to	Bézier:	

	

	

	

	

	

Catmull-Rom	to	Hermite:	

p0,H = p1,CR
p1,H = ½ (p2,CR – p0,CR)
p2,H = p2,CR
p3,H = ½(p3,CR – p1,CR)

	

Bézier	to	Hermite:	

p0,H = p0,Z
p1,H = 3(p1,Z – p0,Z)
p2,H = p3,Z
p3,H = 3(p3,Z – p2,Z)

Hanrahan	

p0,Z
p1,Z
p2,Z
p3,Z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

0 1 0 0
− 1

6 1 1
6 0

0 1
6 1 − 1

6

0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

p0,CR
p1,CR
p2,CR
p3,CR

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

p0,S

p1,S p2,S

p3,S p4,S

p5,Sp3,Zp0,Z

p1,Z p2,Z

Uniform	B-splines	to	Bézier	

p0,Z
p1,Z
p2,Z
p3,Z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1
6

2
3

1
6 0

0 2
3

1
3 0

0 1
3

2
3 0

0 1
6

2
3

1
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

p0,S
p1,S
p2,S
p3,S

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Curless	


