EECS 487: Interactive
Computer Graphics

Lecture 38:
* Tensor-product surfaces: Bézier and B-spline
» Bézier subdivision curves and surfaces

Parametric Surfaces and Patches

A surface is a curve swept through space

Instead of control points along a curve,
make each control point itself a curve

Parametric patches: as with long curves, large surfaces
are partitioned into piecewise parametric patches
« choice of different splines: type, order, etc.

O'Brien, James

Parametric Surfaces

Our discussions on parametric cubic curves can

be generalized to parametric bicubic surfaces:
* parametric curves — parametric surfaces

* splines — parametric patches

* control polygon — control net

Teapot specified with Bézier patches
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Bilinear Patch

Simplest case: 4 points, cross product of 2 linear segments
* basis function is a 3D tent: interpolates control points
« if all 4 control points are co-planar, the patch is flat
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Bilinear Patch
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Bilinear Patch as Tensor Product

To compute s(u,v) for i, 1, and v, v,:
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Outer/Tensor Product

Tensor product (®) of two column vectors, u®v = uv’

- b
al bl a]
a (o * |=| @ [b] b, b, b, }:
i a, bj a,

ab, ab, ab, ab,
az[ b b, b, b4} =| ab ab, ab, ab,

ab, ab, ab, apb
a{b, b2 b3 b4:| 30 39 303 394

Similarly, we can define a surface as the tensor (a.k.a.
Cartesian) product of two curves ...

Durand

Bilinear Patch as Tensor Product

To compute s(i,v) for i, 1, and vy, v,:
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Bilinear Patch Bicubic Patch

Smooth version of quadrilateral with non-planar vertices Bicubic patch s(u,v) is the tensor product of 2 cubic

* gives a saddle-shape (hyperbolic paraboloid) curved surface curves, with 16 unknowns

* the parametric curves are all straight line segments!

_ o , The control points of the 2 cubic curves form a
* the surface is doubly ruled: 2 straight lines through every point

* boundaries are straight line segments: no control of derivatives at the edges control net with 16 control points, from which we
can solve for the 16 unknowns

* not a terribly useful modeling primitive for smooth surfaces
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James, Schulze Funkhouser, Watt Fig. 6.21

Bicubic Patch Bicubic Patch

\ % .. The tensor-product surface in matrix form is:

Given parametric curves

f (1) = uBp,, 0<i<3 and o Poo Poi P Pos
_ ; v p Py P p

gi(v) - VBpijl 0SJ§31 control net control curvesinv S( ,V) = B 10 1 12 1 BTVT

where B is the basis a2 . Py Pa Pn Px

matrix (e.g.,Bézier, S N A Ps Py Pxn P

B-splines, etc. o w0 B B

plines, etc.) = b, (u,v)p,, where b, (u,v)=b,(1)b,(v),

control polygon at v=1 surface at s(i1,%) p | f
(not f(1), which is smooth) (again not f(u), Y are Separab e prOd uctso

which is not shown)

the 1D curve basis functions

To compute the tensor pI’OdUCt of surface, transpose ) i ) o )
Note again that the ordering of the i and j indices of the control points
each i-th curve (gi (V))T = (VBpij)T = pijTBTVT must match those of the basis functions



Bézier Patches

Tensor product of 2 Bézier segments

Basis functions of patch:
product of 2 Bernstein
polynomials:

bo(u)by(v), ..., by(u)b;(v)

".é
2 SN
NN

17

Durnad,Watt, FvD, Hearn&Baker

Order 3 x4 Bezier Patches

Tensor product of
quadratic (g(v))
and cubic (1))
Béziers

[Sederberg]

Bicubic Bezier Patches

In matrix form:

Pow Po Pox P
s(i,v)= uB, Py Pu P Py B;VT
Py P Pn Py

Py, Py P Pss
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[l u o usou :| -3 3 00 Pow Pu Pn Pis 0 3 -6 3 v
3630 Px Pu Pn Py 0O 0 3 -3 v
1.3 31 00 0 1 |

p3() p31 p32 p33

Cheng

Bicubic Bézier Patches

Properties analogous to those of cubic Bézier curves
* interpolate four corner points

* tangency at corners

* convex combination {

» affine invariant !

i

* local control
. Cl

Only variation diminishing doesn’t apply!

Durnad,Watt, FvD Fig. 11.43



Surface Normal
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Tangents to the surface atany |
point can be computed from
infinitesimally nearby points

Holding one parameter constant, we compute the
partial derivative (tangent vector) in each direction
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Yu,Curless,Chenney

Bezier Curve/Surface Problems

To make a long continuous curve with Bézier
segments requires using many segments

Maintaining continuity requires constraints on the
control point positions

- the user cannot arbitrarily move control vertices and
automatically maintain continuity

« the constraints must be explicitly maintained
« itis not intuitive to have control points that are not free

Consider: B-spline

Bicubic Bezier Patch Join

C?: positional continuity C': tangential continuity

requires aligning boundary curves  requires aligning boundary
curves and derivatives

(and similarly for the other boundaries, in the v and u directions)

Watt oo

B-spline Patches

Generated as tensor ! a RS
product of B-spline curves '

All properties of B-spline
curves apply, except for
the VD property

* C%1"for free” for B-splines of degree d
+ linear B-splines have C? continuity, cubic have C?, etc.

[Culess,Watt00]



Trimmed NURBS Surfaces
Sometimes we want “holes” in the surface ;
) -

We can do this by trimming the u-v domain
« define a closed curve (a trim curve) on the NURBS surface
- draw the surface everywhere except inside this curve

Continuity in these regions hard to maintain,
especially in animation

Curless, Merrell

Texture Mapping

Mapping for parametric surfaces is easy:
map surface parameters directly to texture
coordinates: u — s, v — ¢t

Wolfegy

Parametric Surface: Advantages

Parametric curves and surfaces are generalization of

piecewise linear/first degree polylines and polygons
* higher degree polynomials are piecewise smooth

These functions still only approximate the desired

shapes, but advantages:
« easy to construct and manipulate from control points
« easy to enumerate points on surface
- useful for texture mapping!
« much more compact than polygonal mesh (less storage)
« scalable geometric primitives

Parametric Surface: Disadvantages

Disadvantages of approximate surfaces:

« control net must have specific topology
« tensor product surfaces require
control points to form a quad
- for B-spline surfaces, control points
must be distributed relatively “uniformly”
+ must split surface into discrete patches

« works well mostly for smooth surfaces

Other disadvantages:

- intersection test? inside/outside test?

« higher rendering times than polygonal mesh:
« patch must be tessellated into triangles
+ may need adaptive subdivision

[Funkhouser, Hodgins, Durand, James]



Adaptive Subdivision/Tessellation

When rendered as polygonal mesh: ﬁ
- test patch for flatness flat not flat

- if not flat enough, subdivide patch along
each of the two dimensions into four parts
* recurse

« as with curves, use convex hull property for
termination testing (see 3 slides forward)

crack

Cracks (discontinuity) may form
between patches of different degrees
of tessellation

« solution: split shared edge at both faces,
no T-junction

1
i

[Funkhouser, Hodgins, Durand, James]

Subdivision

How do you render a smooth curve?
Approximate the curve as a series of line segments

Subdivision scheme: a process of recursively
subdividing the polylines into smaller pieces
(finer resolution)

« the resulting limit curve will be piecewise smooth

Refinement 1 Refinement 2 Refinement oo

Hart/Carr

Smooth Surfaces

How do you get smooth surfaces?

Tensor product surfaces: piecewise parametric patches
« bicubic Bézier patches: manual C' continuity
+ bicubic B-splines, NURBS: built-in C? continuity

General, mathematically elegant, but problematic
« control mesh dictates surface feature size

« control mesh must be rectangular
« refinement constant across u and v directions
+ same level of detail throughout surface: non-adaptive
« hard to make creases and sharp edges

« surface must be tessellated to be rendered: cracking issue

Gleicher

Bezier Curve Subdivision

de Casteljau algorithm easily and adaptively
subdivide a Bézier curve into smaller segments

» control polygon has sharp corners (non-smooth)

* smooth out this curve by “cutting off” the sharp corners
* using the new control point(s), split the curve into two

« continue to smooth out and subdivide until the limit
curve

Fussell, Shirley, TP3



Bézier Curve Subdivision Reparameterized

Given a Bézier curve with n+1 control points:

Pos P1> Py» s P,0nu € [0, 1], use de Casteljau’s
algorithm to compute two sets of n+1 control
points q,, q;, q,, -...q, and r,, r . r,. ... r, such that:

Foru € [0, 1], Bézier curve’s canonical form is:
| 1)

f(u):[l u uow }BZP

Foru € [0,%]andu < |14, 1],
want to retain canonical form:

fl(u)z[l u uouw }BZP

* q,'s form the control polygon of
the original Bézier curve on u € [0, %]

P=| q ¢ @ - q |

*r/'s form the control polygon of
the original Bézier curve on u

{ ] .

Shirley, Manocha [O’Brien]
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reparameterized

Po yefo..1] P;

with u reparameterized to € [0, 1]

Both uand B cant be changed,
so much change P, to what?

Subdivision Reparameterized New Control Points ]
P fw=|1 u u* & [SB,P
1]. Z Z
Forue[O...2]. p; tw=[ 1« @ o
fa=| 1w w W [BP 3 1
l(u) wowou z fw=|1 u wouw
reparameterizedtou e [0...1]: - )
1 0 0O
fl(u):[ 1 tu tu® }BZP _— 77 0 0 |\ olhe
Py P 21 1L 10 | splitting matrix
1000 fl(u):[l uow }SIBZP Lo
0 £ 0 0 -
S, = 00 1 0 o f,(u)=_1 u uow :|BZP1
. repar.ameterlzatlon T
i 0 00 3 _matrlx P1:H21P=[ q4Q 4 9 q3j|

[O’'Brien] [O’'Brien]



Subdivision = New Control Points Bezier Patch Subdivision
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Rendering Bézier Curves

How do you rasterize a Bézier curve?
- generally no low-level support for drawing curves
« can only draw line segments or individual pixels

Subdividing Bezier Curves

Subdivision doesn‘t change the shape

of a Bézier curve

* asymptotically, the control polygons of the
subdivided curve converge to the actual

curve (at a quadratic rate) de Casteljau algorithm easily and adaptively

subdivide a Bézier curve into smaller segments

- continue to subdivide until the new control points are close

Other uses of subdivision: to being collinear, then approximate with a straight line

« collision/intersection detection

+ the union of convex hulls of the subdivided curve is « collinearity test: distance of control point p; from the line

a subset of the convex hull of the original curve through pyand p,;: p
. ' h i
recursive searc N . . ‘(Pn _ Po)x (P,- -p, )‘ . I
« good for curve editing and approximation: d= =‘P,- —po‘sme d
+ local refinement: change the control point(s) of ‘pn - P, {
one of the subdivided curve p P
0 n

Fussell, Shirley, TP3

Manocha, Durand



Converting Spline Representations

All the cubic splines are equivalent (span the same space):
f(u) = ua = uBp

where:
uis the canonical basis set,
B the basis matrix, and
p the control points

Other curve
representations can
be converted to
Bézier for rendering!

To use a different spline is to change basis matrix:

f(uy =va=uBp=u@®B,B,)Bp

=uB, (Balz_l Bp)=uB,p,
we transform the control points from one type to the
other:p,,=B, 'Bp

alt

Marschner

Uniform B-splines to Bézier

Poz Y % % 0 Pos
Pz | 0 % % 0 Pis
P,z 0 % % 0 Pys
P;z 0 % % % Pss
Pis_ Piz P>z D
Pss
Poz Psz

° °
Pos Pss Pss
Curless

Rendering Curves

Other curve representations  Catmull-Rom to Hermite:

can be converted to Bezier Pon=Picr
for rendering P =" (Prcr—Pocr)
P = Pocr

. = 5Py ek -
Catmull-Rom to Bézier: Psir = 2Pk = Prce)

0 | Poc Bézier to Hermite:

Poz 0 1 0

Pz || =% 1 V% O Picr Por=Poz

P, | | O % 1 =Y Pacr Pia=3Piz—Po2)
P 0 0 1 0 J p,g Pon=Psz

P3u =332 P22

Hanrahan



