
EECS	487:	Interactive	

Computer	Graphics	
Lecture	37:	
•  B-splines	curves	
•  Rational	Bézier	and	NURBS	

Cubic	Splines	
A	representation	of	cubic	spline	consists	of:	

•  four	control	points	(why	four?)	
•  these	are	completely	user	specified	

•  determine	a	set	of	blending	functions	

	

There	is	no	single	“best”	representation	of	cubic	spline:	

	

	

	

	
	

	

	

	

*	n/a	when	some	of	the	control	“points”	are	tangents,	not	points	

Cubic	 Interpolate?	 Local?	 Continuity	 Affine?	 Convex*?	 VD*?	

Hermite	 �	 �	 C1 �	 n/a	 n/a	

Cardinal	

(Catmull-Rom)	

	except	

endpoints	

�	 C1 �	 no	 no	

Bézier	 endpoints	 �	 C1 �	 �	 �	

natural	 �	 �	 C2 �	 n/a	 n/a	

B-splines	 �	 �	 C2 �	 �	 �	

Natural	Cubic	Spline	
A	natural	cubic	spline’s	control	points:		
	

• position	of	start	point	
• 1st	derivative	of	start	point	

• 2nd	derivative	of	start	point	

• position	of	end	point	
	

•  constraint	and	basis	matrices:	

	

•  subsequent	segments	assume	the	position	and	1st	and	2nd	

derivatives	of	the	end	point	of	the	preceding	segment	
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f (u) = a0 + u
1a1 +     u2a2 +     u3a3

p0 = f (0) = a0 + 0
1a1 +      02 a2 +     03a3

p1 = f '(0) =            a1 + 2*0
1a2 + 3*0

2 a3
p2 = f ''(0) =                  2*11a2 + 6*0

2 a3
p3 = f (1) = a0 +  11a1 +      12 a2 +      13a3

Natural	Cubic	Spline	

Given	n	control	points,	a	natural	cubic	
spline	has	n−1 segments	

	

For	segment	i:	

	

	

	

	

	

	Set:	

O’Brien	

  

fi (0) = pi−1,  i = 1,…,n
fi (1) = pi , i = 1,…,n

fi
' (0) = fi−1

' (1),  i = 1,…,n −1
fi
"(0) = fi−1

" (1),  i = 1,…,n −1

f1
"(0) = fn

"(1) = 0



Natural	Cubic	Splines	

Each	curve	segment	(other	than	the	first)	receives	

three	out	of	its	four	control	points	from	the	

preceding	segment,	this	gives	the	curve	C2	continuity	

	

However	the	polynomial	coefficients	are	

dependent	on	all	n	control	points	
• control	is	not	local:	any	change	in	any	segment	

may	change	the	whole	curve	

• curve	tends	to	be	ill-conditioned:	a	small	change	

at	the	beginning	can	lead	to	large	subsequent	changes	

B-splines	

TP3,	Watt	

Given	n	(≥ d + 1)	control	points,	
a	B-spline	curve	has	n−d	segments	

•  d	is	the	degree	of	each	B-spline	segment	

•  the	segments	are	numbered	d	to	n−1,	for	ease	of	notation	
•  number	of	control	points	is	independent	of	the	degree	

•  unlike	a	Bézier	spline,	where	adding	a	control	

point	necessarily	increases	degree	by	one,	

•  and	unlike	multi-segmented	Bézier	curve	where	multiple	control	

points	supporting	a	new	segment	must	be	added	at	the	same	time	

•  segment	degree	(d)	is	also	curve	degree	

B-splines	of	degree	d	are	said	to	have	order	k	(= d + 1)	

Advantages	of	B-splines	
Main	advantages	of	B-splines:	
•  number	of	control	points	not	limited	by	degree	(d)	
•  automatic	Cd�1	continuity	

•  local	control	

To	create	a	large	model	with	C2	continuity	and	

local	control,	you	pretty	much	want	to	use	cubic	

B-splines	

Aside	from	the	first	segment,	each	B-spline	

segment	shares	the	first	d	control	points	with	its	

preceding	segment	
•  sounds	like	natural	spline	…	

how	can	B-splines	have	local	control?	

Local	Control	

Unlike	natural	splines	and	Bézier	curves,	B-splines’	

control	points	are	not	derivatives	

Instead	each	segment	is	a	weighted-sum	of	d	basis	
functions	(only),	giving	the	control	points	local	

control	

Hence	Basis	spline	



Why	is	B	called	the	Basis	Matrix?	

Polynomials	as	a	Vector	Space	

Polynomials	f (u) = a0 + a1u + a2u2 + … + anun

•  can	be	added:	just	add	the	coefficients	

•  can	be	multiplied	by	a	scalar:	multiply	the	coefficients	

•  are	closed	under	addition	and	multiplication	by	scalar	

•  i.e.,	the	result	is	still	a	polynomial	

�	It’s	a	vector	space!	

	

A	vector	space	is	defined	by	a	set	of	basis	

•  linearly	independent	vectors	
•  linear	combination	of	the	basis	vectors	spans	the	space	

•  here	vector	=	polynomial	

Durand	

Canonical	Power	Basis	
1, u, u2, u3, … , un

•  are	independent	
•  any	polynomial	is	a	linear	combination	of	these,	

a0 + a1u + a2u2 + … + anun

•  often	called	the	canonical	basis	functions	

Just	as	with	Euclidean	space,	

there	are	infinite	number	of	possible	basis	

For	cubic,	the	basis	functions	could	be,	for	example:	

•  1, 1+u, 1+u+u2, 1+u–u2+u3

•  u3, u3–u2, u3+u, u3+1

Durand	

Basis	Matrix	and	Basis	Functions	

A	basis	matrix	(B)	transforms	the	canonical	basis	(u)	
to	another	basis:	

	

	

	

	

	

The	bi(u)’s	are	the	basis	functions	of	the	other	basis	
(we’ve	known	them	as	the	blending	functions)	

f (u) = ua = uBp = (1− u)p0 + up1 = bi (u)pi
i=0

n

∑

uB = bi (u)
i=0

n

∑



B-splines	

Given	n	control	points,	there	are	n−d	segments	

• we	call	the	segments	fi(u),	d ≤ i < n	
•  each	segment	has	a	unit	range,	0 ≤ u ≤1

• we	call	the	entire	B-spline	curve	with	n	control	points	f(t)

The	parameters	ti’s	where	two	segments	join	are	

called	knots	

•  the	start	and	end	points	(td	and	tn)	

are	also	called	knots	

•  the	range	[td, tn]	is	the	domain	

of	a	B-spline	curve	

•  the	parameter	u	of	segment	i	is	
scaled	to	ti ≤ u < ti+1	
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Uniform	B-splines	

The	knots	of	a	uniform	B-splines	are	spaced	at	

equal	intervals	
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Arbitrary	curves	have	an	uncountable	number	of	
parameters	

	

Real-number	function	value	expanded	into	an	infinite	
set	of	basis	functions:	

	

	

	

Approximate	by	truncating	set	
at	some	reasonable	point,	e.g.,	3:	

What	Degree	is	Sufficient?	

O’Brien	

f (u) = bi (u)pi
i=0

∞

∑

f (u) = bi (u)pi
i=0

3

∑

In	the	linear	case,	the	basis	functions	are	

b0(u) = (1−u)	and	b1(u) = u	
	

	

	

	

(a.k.a.	tent/triangle	basis,	the	i’th	functions	are	
shifted	versions	of	the	0’th)	

Linear	B-spline	Segment	

0 1 2

1

James,Hanrahan	

b(u) =

0 u < −1
1+ u −1< u < 0
1− u 0 < u <1
0 u >1

⎧
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⎪



Linear	B-spline	Curve	

Consider	using	linear	B-splines	(d=1,	k=2)	to	draw	

a	piecewise	linear	curve	(a	polyline)	

To	draw	the	curve,	we	perform	linear	interpolation	

of	a	set	of	control	points	p0, …, pn–1

For	segment	i,	we	write	the	interpolating	linear	

curve	as	fi(u) = (1−u)pi–1+ upi,	where u =
t − ti
ti+1 − ti

∈ 0,1[ ]

p0 pn–1 
pi–2 

pi–1 
pi+1 pi+2 

pi 

t = i–1 

t = i 

t = i+1 

t = i+2 

t = i+3 

fi(u) 

[Craig]	

Linear	B-splines	

The	influence	of	control	point	pi	on	the	whole	curve	

is	thus	the	“tent/triangle”	function:	

	

	

	

	

	

	

	

The	hardest	part	of	working	with	B-splines	is	

keeping	track	of	the	tedious	notations!	

[Craig]	

ti ti+1 ti+2 

bi(t)
1

	

bi (t) =

t − ti
ti+1 − ti

, ti ≤ t < ti+1,

ti+2 − t
ti+2 − ti+1

, ti+1 ≤ t < ti+2 ,

0, everywhere	else

⎧
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t − ti
ti+1 − ti

ti+2 − t
ti+2 − ti+1

pi−1
pi

pi+1

Linear	B-splines	

Linearly	interpolating	the	set	of	control	points	to	draw	

the	curve:	

 

fi (u) = (1− u)pi−1 + upi =
ti+1 − t
ti+1 − ti

pi−1 +
t − ti
ti+1 − ti

pi ,  u =
t − ti
ti+1 − ti

,  ti ≤ t < ti+1

fi+1(u) = (1− u)pi + upi+1 =
ti+2 − t
ti+2 − ti+1

pi +
t − ti+1
ti+2 − ti+1

pi+1,  u =
t − ti+1
ti+2 − ti+1

,  ti+1 ≤ t < ti+2

[Craig]	

ti–1 ti ti+1 ti+2 ti+3 

f(t) upi+1upi

(1�u) pi(1�u) pi−1

pipi−1p0

pi+1pi−2 pn−1

pi+2

fi(u)

fi+1(u)

Linear	B-splines	

We	can	rewrite	the	segment	functions	as:	

	

	

	

And	for	the	whole	curve:		

	

	

where	bi(t)’s	are	the	basis	functions	(in	this	case,	linear)	

 

fi (t) = bi−1(t)pi−1 + bi (t)pi ,  ti ≤ t < ti+1
fi+1(t) = bi (t)pi + bi+1(t)pi+1,  ti+1 ≤ t < ti+2

[Craig]	

f (t) = fi (t) = bi (t)pi
i=1

n−1

∑
i=1

n−1

∑

 

fi (u) = (1− u)pi−1 + upi =
ti+1 − t
ti+1 − ti

pi−1 +
t − ti
ti+1 − ti

pi ,  u =
t − ti
ti+1 − ti

,  ti ≤ t < ti+1

fi+1(u) = (1− u)pi + upi+1 =
ti+2 − t
ti+2 − ti+1

pi +
t − ti+1
ti+2 − ti+1

pi+1,  u =
t − ti+1
ti+2 − ti+1

,  ti+1 ≤ t < ti+2



Quadratic	B-splines	
Quadratic	B-splines	(d=2,	k=3)	are	drawn	by	two	

interpolation	steps,	similar	but	different	to	quadratic	

Bézier	

	

	

	

	

Whereas	de	Casteljau	algorithm	performs	the	iterative	

interpolations	for	Bézier	curves,	de	Boor	algorithm	

does	so	for	B-splines	
[TP3,Buss]	

4/5 

1/5 4/5 

1/5 
1/5 

4/5 

Bézier	quadratic:	

parameter	“along”	edge	

B-splines	quadratic:	

parameter	“around”	

control	point	

pi–2

pi–1 

pi 

qi–1 

qi 

f(t) 

de	Boor	Algorithm	
De	Boor	algorithm	is	an	iterative	interpolation	

algorithm	that	generalizes	de	Casteljau’s	algorithm	

To	evaluate	a	B-spline	curve	f(t) at	parameter	value	t:	
1.  determine	the	[ti, ti+1)	in	which	t	belongs;	

d ≤ i < n,	the	domain	of	the	curve	is	[td, tn]
2.  to	compute	f(t)	of	degree	d,	first	interpolate	between	

control	points	p’s	
3.  then,	in	a	bottom	up	fashion,	continue	to	perform	r	rounds	
of	pairwise	linear	interpolations,	until	r = d,	using:

[TP3,Buss]	

f j ,d
r (t) =

t j+k−r − t
t j+k−r − t j

f j−1
r−1(t)+

t − t j
t j+k−r − t j

f j
r−1(t),

  

t j ≤ t < t j+k−r ,
1≤ r ≤ d,

j = i − d + r,  i − d + r +1,  …,i

Quadratic	B-splines	

Using	the	de	Boor	algorithm	we	first	compute	qi–1	

and	qi	(note:	over	two	knot	intervals):	

[TP3,Buss]	

B-splines	quadratic	

pi–2

pi–1 

pi 

qi–1 

qi 

f(t) 

 

qi−1 = fi−1,2
1 (t) = ti+1 − t

ti+1 − ti−1
pi−2 +

t − ti−1
ti+1 − ti−1

pi−1,  ti−1 ≤ t < ti+1

qi = fi,2
1 (t) = ti+2 − t

ti+2 − ti
pi−1 +

t − ti
ti+2 − ti

pi ,  ti ≤ t < ti+2

Quadratic	B-splines	

Then	we	linearly	interpolate	between	qi–1	and	qi	in	

a	second	round	(r = 2)	of	interpolation:	

[TP3,Buss]	

B-splines	quadratic	

pi–2

pi–1 

pi 

qi–1 

qi 

f(t) 

 

fi,2
2 (t) = ti+1 − t

ti+1 − ti
qi−1 +

t − ti
ti+1 − ti

qi ,  ti ≤ t < ti+1

f (t) = ti+1 − t
ti+1 − ti

ti+1 − t
ti+1 − ti−1

pi−2

+ ti+1 − t
ti+1 − ti

t − ti−1
ti+1 − ti−1

+ t − ti
ti+1 − ti

ti+2 − t
ti+2 − ti

⎛
⎝⎜

⎞
⎠⎟
pi−1

+ t − ti
ti+1 − ti

t − ti
ti+2 − ti

pi



Quadratic	B-splines	

The	control	point	pi	influences	fi,2(t),	fi+1,2(t),	and	
fi+2,2(t),	from	which	we	can	assemble	its	blending	

function:

[TP3,Buss]	

!

bi (t) =

ti+1 − t
ti+1 − ti

ti+1 − t
ti+1 − ti−1

, ti ≤ t < ti+1,

ti+1 − t
ti+1 − ti

t − ti−1
ti+1 − ti−1

+ t − ti
ti+1 − ti

ti+2 − t
ti+2 − ti

, ti+1 ≤ t < ti+2 ,

t − ti
ti+1 − ti

t − ti
ti+2 − ti

, ti+2 ≤ t < ti+3,

0, everywhere!else

⎧

⎨

⎪
⎪
⎪
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⎪
⎪
⎪
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fi(t)
fi+1(t)

fi+2(t) Interpolation	and	Basis	Functions	

Bézier	 B-spline	
interpolation	 de	Casteljau	 de	Boor	

basis	functions	
Bernstein	

polynomials	

Cox-de	Boor	

recurrence	

Cox-de	Boor	Recurrence	
de	Boor	algorithm	constructs	basis	functions	“bottom-

up”,	whereas	Cox-de	Boor	recurrence	generates	the	

basis	functions	“top-down”	

Let	bi,k(t)	be	a	k-th	order	basis	function	for	weighting	

control	point	pi,	
	
	
	
	
	
	
	
	
	
	
•  if	the	denominator	is	0	(non-uniform	knots),	

the	basis	function	is	defined	to	be	0
•  Cox-de	Boor	recurrence	essentially	takes	a	linear	interpolation	of	linear	
interpolations	of	linear	interpolations,	similar	to	the	de	Casteljau	algorithm

bi,1(t) =
1, ti ≤ t < ti+1 	(both ≤ for	last	segment),
0, otherwise

⎧
⎨
⎪

⎩⎪

bi,k (t) =
t − ti

ti+k−1 − ti
bi,k−1(t)+

ti+k − t
ti+k − ti+1

bi+1,k−1(t)

Cubic	B-splines	

For	4th	order	(cubic)	B-splines,	the	

recursive	definition	starts	at	bi,4(t):	

base:	

	

	

	

linear:	

	

quadratic:	

	

cubic:	

a	step	function	of	1	
interval	

a	piecewise	linear	“tent”	

function	spanning	2	
intervals	

a	piecewise	quadratic	

function	spanning	3	
intervals	

a	piecewise	cubic	

function	spanning	4	
intervals	

Illustrated	with	uniformly	spaced	knots	

bi,4(t) 

bi,1(t) 

bi,3(t) 

bi,2(t) 

	

bi,1(t) =
1, ti ≤ t < ti+1
0, otherwise

⎧
⎨
⎪

⎩⎪

bi,2 (t) =
t − ti
ti+1 − ti

bi,1(t)+
ti+2 − t
ti+2 − ti+1

bi+1,1(t)

bi,3(t) =
t − ti
ti+2 − ti

bi,2 (t)+
ti+3 − t
ti+3 − ti+1

bi+1,2 (t)

bi,4 (t) =
t − ti
ti+3 − ti

bi,3(t)+
ti+4 − t
ti+4 − ti+1

bi+1,3(t)



Uniform	Cubic	Basis	Function	
Constructed	from	the	Cox-de	Boor	recurrence	
• taking	advantage	of	fixed	interval	between	knots	

• considering	only	intervals	for	which	the	basis	function	

is	non-zero	

� 

bi(t)

ti ti+1 ti+2 ti+3 ti+4

[Buss,	Shirley,	Gleicher]	

!

Let!ti = i,!specializing!for!i = 0:

b0,4 (t) = !

t 3

6
, 0 ≤ t <1,

−3t 3 +12t 2 −12t + 4
6

, 1≤ t < 2,

3t 3 − 24t 2 + 60t − 44
6

, 2 ≤ t < 3,

−t 3 +12t 2 − 48t + 64
6

, 3≤ t < 4,

0, everywhere!else

⎧
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⎪
⎪
⎪
⎪
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⎩

⎪
⎪
⎪
⎪
⎪
⎪

	

bi,1(t) =
1, ti ≤ t < ti+1
0, otherwise

⎧
⎨
⎪

⎩⎪
b1,2 (t) = t − ti( )bi,1(t)+ ti+2 − t( )bi+1,1(t)
bi,3(t) =

t − ti
2

bi,2 (t)+
ti+3 − t
2

bi+1,2 (t)

bi,4 (t) =
t − ti
3

bi,3(t)+
ti+4 − t
3

bi+1,3(t)
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Local	Control	Property	
For	uniform,	multi-segment	B-spline	curves,	the	knot	values	are	equally	

spaced	and	each	basis	function	is	a	copy	and	translate	of	each	other	

We	define	the	entire	set	of	curve	segments	as	one	B-spline	curve	in	t:	
	

	

The	curve	is	a	linear	combination	of	all		

the	basis	functions	of	the	segments:	

 
f(t) =  bi (t)pi

i=0

n−1

∑ ,  t ∈[3,n]

domain	of	curve	

� 

b0(t)

� 

b1(t)

� 

b2(t)

� 

b3(t)

� 

b4 (t)

� 

b5(t)

� 

b6(t)

� 

b7(t)

� 

b8(t)

•  each	segment	is	influenced	by	four	

(non-zero)	basis	functions	

•  each	control	point	is	scaled	by	a	
single	basis	function	

•  each	basis	function	is	non-zero	
over	four	successive	intervals	in	t
�  each	control	point	influences	four	

segments	(only)	�	local	control	
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Watt	00	

f3(u)
f8(u)f4(u)
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Convex	Hull	Property	

The	basis	function	is	≥ 0	and	sums	to	

unity	in	the	range	ti	to	ti+4 
�  all	the	control	points	form	a	convex	hull	

�  the	whole	curve	is	within	the	convex	hull	

Between	knot	values,	the	four	basis	

functions	are	non-zero	and	sum	to	unity	

At	each	knot	value,	one	basis	function	

“switches	off”	and	another	“switches	on”,	and	

three	basis	functions	are	non-zero	and	sum	to	unity	

domain	of	curve	

� 

b0(t)

� 

b1(t)

� 
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� 

b3(t)
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b4 (t)
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� 
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bi−k (t)
k=0

3

∑ = 1,  ti ≤ t < ti+1

b
i− k
(t ) ≥ 0,  3 ≤ i < n,  0 ≤ k ≤ 3

� 

bi(t)

ti ti+1 ti+2 ti+3 ti+4

Uniform	Cubic	B-spline	

Segment	Basis	Functions	

Basis	functions	for	a	single	B-spline	segment	���
• shifted	pieces	of	a	single	basis	function	to	u∈[0,1]	range	

Specializing	for	i = 0:	

!

bi,4 (u) =
u3

6
, u = t, !0 ≤ t <1

bi−1,4 (u) =
−3u3 + 3u2 + 3u +1

6
, u = t −1, !1≤ t < 2

bi−2,4 (u) =
3u3 − 6u2 + 4

6
, u = t − 2, !2 ≤ t < 3

bi−3,4 (u) =
(1− u)3

6
, u = t − 3, !3≤ t < 4

f(t)

BBs—2
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—6
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BBs—3
BBs0

0 1
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b(u)

[Shirley,	Gleicher]	



Control	points	for	one	segment	fi(u)	are	pi-3,	pi-2,	

pi-1,	pi,	3 ≤ i < n,	recall:	the	control	points	can	take	
on	arbitrary	values	(geometric	constraints)	

A	segment	is	described	as:	

	

	

	

	

	

The	cubic	B-spline	segment	

basis	matrix	is:	
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f3(u)
f4(u)

f5(u)

f6(u)

f7(u)

f8(u)

f9(u)

Uniform	Cubic	B-spline	Segment	

	

fi (u) = 	 bi−3+ j (u)pi−3+ j
j=0

3

∑ , 	u ∈[0,1]

= (1− u)
3

6
pi−3 +

3u3 − 6u2 + 4
6

pi−2 +

−3u3 + 3u2 + 3u +1
6

pi−1 +
u3

6
pi

 

B =  
1
6

  

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Bézier	is	Not	B-spline	

Relationship	to	the	control	points	is	different	

Bézier	

B-spline	

Durand	

Interpolation	

A	B-spline	curve	doesn’t	have	to	interpolate	any	

of	its	control	points	

Interpolation	with		

Multiple	Control	Points	

A	B-spline	curve	can	be	made	to	interpolate	one	or	

more	of	its	control	points	by	adding	multiple	control	

points	of	the	same	value,	at	the	loss	of	continuity	

Examples:	

Watt	00	

C2G2

C2G1 C2G0

curve	becomes	a	straight	

line	on	either	side	of	the	

control	points	



Multiple	control	points	reduces	continuity:	the	

intersection	between	the	two	convex	hulls	shrinks	

from	a	region	to	a	line	to	a	point,	and	causes	the	

adjacent	segments	to	become	linear	
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Interpolation	with		

Multiple	Control	Points	

curve	becomes	a	

straight	line	on	

either	side	of	the	

control	points	

Non-uniform	B-splines	interpolate	without	causing	

adjacent	segments	to	become	linear	by	using	

multiple	knots	instead	of	multiple	control	points	

The	interval	between	ti	and	ti+1	may	be	non-uniform;	

when	ti = ti+1,	curve	segment	fi	is	a	single	point	

Non-uniform	B-splines	
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Interpolation	with	Multiple	Knots	
Uniform	B-splines:	

Uniform	B-splines,	

multiple	control	points:	

Non-uniform	B-splines,	

multiple	knots:	

Watt	00	

curve	becomes	a	

straight	line	on	

either	side	of	the	

control	points	

curve	doesn’t	

become	a	straight	

line	(though	

continuity	is	still	lost)	

t = 0,1, 2,3, 4, 4, 4, 5, 6, 7,8[ ]
f4 (u)	and	f5(u)	(Q4 	and	Q5 	in	figure)	shrinks	to	0

Non-Uniform	

B-splines	Basis	Functions	

Because	the	intervals	between	knots	are	not	

uniform,	there	is	no	single	set	of	basis	functions	

Instead,	the	basis	functions	depend	on	the	intervals	

between	knot	values	and	are	defined	recursively	in	

terms	of	lower-order	basis	functions	(using	the	Cox-

de	Boor	recurrence)	

A	Bézier	curve	is	really	a	non-uniform	B-splines	with	

no	(interior)	knot	between	control	points	
• B-splines	can	be	rendered	as	a	Bézier	curve,	by	inserting	
multiple	knots	at	the	control	points,	with	no	interior	knot!	



Polynomial	curves	cannot	represent	conic	sections/

quadrics	exactly–for	modeling	machine	parts,	e.g.	

Why	not?	
A	conic	section	in	2D	is	the	

perspective	projection	

of	a	parabola	in	3D	onto	

the	plane	z = 1,	with	the	

COP	at	the	origin	o	

Polynomial	curves	are	affine	invariant,	

but	not	perspective	invariant

Instead,	use	a	rational	curve,	

i.e.,	a	ratio	of	polynomials:	

Rational	Curves	

Merrell,	Funkhouser,	andrews.edu	

f (u) = p1(u)
p2 (u)

� 

f(u)

� 

fp (u)

Rational	Cubic	Bézier	
As	with	homogeneous	coordinate,	a	rational	curve	is	a	

nonrational	curve	that	has	been	perspective	projected	

Cubic	Bézier:	
• add	an	extra	weight	coordinate:	wipi = (wixi, wiyi, wizi, wi)�
(wi	is	the	homogeneous	coordinate)	

•  rational	due	to	division	by	final	weight	coordinate:	

(=	perspective	divide)	

• projected	to	z = 1:	
fp (u) =

wibi (u)pi
i=0

3

∑

wibi (u)
i=0

3

∑

Ramamoorthi,	Watt00	

If	the	wi’s	are	all	

equal,	we	recover	

the	nonrational	

curve	

Advantages	of	Rational	Curves	

Both	affine	and	perspective	invariant	

Can	represent	conics	as	rational	quadratics	

Weights	(wi’s)	provide	extra	control:	

values	affect	“tension”	near	control	points	

•  the	wi’s	cannot	all	be	simultaneously	zero	

•  if	all	the	wi’s	are	≥ 0,	the	curve	is	still	contained	in	
the	convex	hull	of	the	control	polygon	

[Farin]	

moving	control	point 	changing	weight	

Role	of	the	Weights	(wi’s)	

For	example:	larger	w1	means	that	the	pre-image,	

nonrational	curve	near	p1	is	“further	up”	in	z,	and	
the	projected	image	is	“pulled”	towards	p1	

[Farin,Watt]	
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f(u)

� 

fp (u)



Non-Uniform	Rational	B-Splines	

f (u) =
wibi,k (u)pi

i=0

3

∑

wibi,k (u)
i=0

3

∑

 

wi =  scalar weight for each control point

pi =  control points

wipi = (wixi ,wiyi ,wizi ,wi )
bi,k (u) =  the B-splines basis functions

k =  B-splines order

with:	

Advantages	of	NURBS	

Most	general,	can	represent:	
• B-splines	
• Bézier	and	rational	Bézier	
•  conic	sections	
	

Properties:	
•  local	control	
•  convex	hull	(if	wi ≥ 0)	
•  variation	diminishing	(if	wi ≥ 0)	
•  invariant	under	both	affine	and	projective	transformations	

	

Standard	tool	for	representing	

freeform	curves	in	CAGD	applications	

cubic	NURB	control	points	
cubic	Bézier	control	points	

[Farin]	

How	to	Choose	a	Spline	

Hermite	curves	are	good	for	single	segments	

when	you	know	the	parametric	derivative	or	

want	easy	control	of	it	

Bézier	curves	are	good	for	single	segments	or	

patches	where	a	user	controls	the	points	

B-splines	are	good	for	large	continuous	curves	

and	surfaces	

NURBS	are	the	most	general,	and	are	good	

when	that	generality	is	useful,	or	when	conic	

sections	must	be	accurately	represented	(CAD)	

Chenney	


