ds

EECS 487: Interactive Computer Graphics

Lecture 36: Parametric surfaces

- Swept surfaces
- Geometric continuity
- Bézier curves and patches

General Sweep Surfaces

Trajectory path may be any arbitrary curve
The profile curve may be transformed as it moves along the path

- scaled, rotated with respect to path orientation, ...

Example: surface $\mathbf{s}(u, t)$ is formed by a profile curve in the $x y$-plane $\mathbf{p}(u)=[x(u) y(u) 01]^{T}$ extruded along the z-axis:

```
s(u,t):\mathbf{T}(t)\mathbf{p}(u):
    x(u,t)=x(u),y(u,t)=y(u),0\lequ\leq1,
    z(u,t)=t,\mp@subsup{z}{\mathrm{ min }}{}\leqt\leq\mp@subsup{z}{\mathrm{ max }}{}
```


Extruded/Swept Surfaces

Consider a curve in space as being swept out by a moving point: $\mathbf{p}(u)=[x(u) y(u) z(u)]^{T}$

- as we vary u the point moves through space
- the curve is the path taken by the point

Yu,Terzopoulos

Extruded/Swept Surfaces

Different profile curves, same trajectory curve

Surfaces of Revolution

General Sweep Surfaces

The trajectory curve is like a spine

- sweeping the profile curve "skins" a surface around the trajectory curve
- the shape of the spine controls the shape of the object
- nice for animation:
- don't have to control the surface
- just reshape the spine and the surface follows along

A Banana as a Generalized Cylinder

What we specify

- a mostly circular profile
- a spine for the banana
- a scaling function

cross section

scaling function

Periodically along the spine

- place a cross section
- scale it appropriately
- connect to previous section

General Sweep Surfaces

For every point along $\mathbf{q}(t)$, lay $\mathbf{p}(u)$ so that $\mathbf{o}_{\mathbf{p}}$ coincides with $\mathbf{q}(t)$

This gives us locations along $\mathbf{q}(t)$, how about orientation?

1. fixed or static: aligns $\mathbf{p}(u)$ with an axis
2. allows smoothly varying orientation that "follows" the orientation of $\mathbf{q}(t)$: how to specify the orientation of $\mathbf{q}(t)$?

Differential Geometry of Curves

Uses:

- define orientation of swept surfaces
- compute velocity of animation
- compute normals of surfaces
- analyze smoothness/continuity

Tangent:
The velocity of movement, $1^{\text {st }}$ derivative with respect to t $\mathbf{q}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$ or $\mathbf{q}^{\prime}(t) \approx(\mathbf{q}(t+\Delta t)-\mathbf{q}(t)) / \Delta t$

- $\left\|\mathbf{q}^{\prime}(t)\right\|$ is the speed of movement
- normalized tangent $\mathbf{t}(t)=\mathbf{q}^{\prime}(t) /\left\|\mathbf{q}^{\prime}(t)\right\|$ is the direction of movement
- the numeric form of forward difference is useful if $\mathbf{q}(t)$ is a black box

The tangent provides us with the first of three orientations for swept surfaces

Arc Length Parameterization

For smooth motion, we want continuous $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives with respect to time $d \mathbf{q} / d t$

But to describe shape, we could ask for continuity with respect to equal steps (arc length): $d \mathbf{q} / d s$

Arc length parameterization: equal steps in parameter space s maps to equal distances along the curve

- intrinsic to shape of curve, not dependent on any particular coordinate system

Arc Length Parameterization

If s is the length of curve from $\mathbf{q}(0)$ to $\mathbf{q}(t)$,
$\mathbf{q}(s)$ can be expressed in terms of t :
 proportional to passing time:

- i.e., equal steps in time (t) does not necessarily give equal distances in arc length (s)
$t=1, s=s(1)=$ curve length
$s(t)=\int_{0}^{t}\left\|\mathbf{q}^{\prime}(\tau)\right\| d \tau=\int_{0}^{t} \sqrt{x^{\prime}(\tau)^{2}+y^{\prime}(\tau)^{2}+z^{\prime}(\tau)^{2}} d \tau \longleftarrow \begin{aligned} & \text { usually } \\ & \text { cannot be } \\ & \text { evaluated } \\ & \text { analytically }\end{aligned}$

Arc Length by Linear Interpolation

Instead:

- pre-compute a set of variable arc lengths s_{i} for points on the curve using t parameterization
- to find the corresponding point (\mathbf{p}_{k}) on the curve for a given s_{k} linearly interpolate the points of the 2 nearest arc lengths to either side s_{i} and $s_{i+1}, s_{i} \leq s_{k} \leq s_{i+1}$:

$$
\mathbf{p}_{k}=\frac{s_{i+1}-s_{k}}{s_{i+1}-s_{i}} \mathbf{p}_{i}+\frac{s_{k}-s_{i}}{s_{i+1}-s_{i}} \mathbf{p}_{i+1}
$$

Curvature and Normal

Curvature (k): derivative of tangent with respect to arc length $(d \mathbf{t}(s) / d s)$

- how fast the curve pulls away from a straight line
- always orthogonal to tangent
- constant for a circle
- zero for a straight line

Normal: normalized curvature

- vector points to the center of curvature - the $2^{\text {nd }}$ of 3 orientations for swept surfaces

Frenet Frame

Given a curve $\mathbf{q}(t)$ we can attach a smoothly varying coordinate system consisting of three basis vectors (reparameterized to arc length):

- tangent: $\mathbf{t}(s)=\mathbf{q}^{\prime}(s(t))$ (normalized)
- normal: $\mathbf{n}(s)=\mathbf{t}^{\prime}(s) /\left\|\mathbf{t}^{\prime}(s)\right\|$
- binormal: $\mathbf{b}(s)=\mathbf{n} \times \mathbf{t}$

Due to Jean Frédéric Frenet (1847) and Joseph Alfred Serret (1851)

As we move along $\mathbf{q}(t)$, the Frenet frame $(\mathbf{t}(s), \mathbf{b}(s), \mathbf{n}(s))$ varies smoothly

Torsion and Binormal

Torsion: deviation of the curve from the plane formed by the tangent and normal vectors

- zero for a plane curve
- binormal vector points to the winding direction of the space curve

- the $3^{\text {rd }}$ of 3 orientations for swept surfaces

A curve is a 1D manifold in a space of higher dimension

- Plane (2D) curves, described by:
- position, tangent, curvature
- Space/skew (3D) curves, described by:
- position, tangent, curvature, torsion

Frenet Swept Surfaces

Orient the profile curve $\mathbf{p}(u)$ using the Frenet frame of the trajectory $\mathbf{q}(t)$

- put $\mathbf{p}(u)$ in the normal plane of $\mathbf{q}(t)$
- place $\mathbf{o}_{\mathbf{p}}$ on $\mathbf{q}(t)$
- align $\mathbf{p}_{x}(u)$ with \mathbf{b}
- align $\mathbf{p}_{y}(u)$ with $-\mathbf{n}$

If $\mathbf{q}(t)$ is a circle, you get a surface of revolution exactly!

Variations

Several variations are possible:

- scale $\mathbf{p}(u)$ as it moves, possibly scaled to $\|\mathbf{q}(t)\|$
- morph $\mathbf{p}(u)$ into some other curve
$\mathbf{f}(u)$ as it moves along $\mathbf{q}(t)$

center of similitude

 of the shell

Problems with Swept Surfaces

What happens at inflection points?

- curvature goes to zero
- then normal flips!
- resulting in a non-smooth swept surface

Also, difficult to avoid self-intersection

Polynomial Surfaces

CAGD (Computer-Aided Geometric Design): area of CG dealing with free-form shapes

1960's:

- the need for mathematical representations of free-form shapes became apparent in the automotive and aeronautic industries
- Paul de Casteljau \& Pierre Bézier independently developed the theory of polynomial curves \& surfaces
- which became the basic tool for describing and rendering free-form shapes

Parametric Patches

Parametric curves and surfaces give and require fewer degrees of control than polygonal meshes

- users control a few points
- program smoothly fills in the rest
- representation provides analytical expressions for normals, tangents, etc.
Surface is partitioned into patches:
- piecewise parametric surfaces (3D splines)
- each defined by control points forming a control net

Most popular for modeling are Bézier, B-splines, and NURBS

- we'll study these as 2D splines first, then we'll use them as 3D patches

Joint Smoothness

C^{0} continuous

- curve/surface has no breaks/gaps/holes
- model is "watertight"

C^{1} continuous

- model "looks smooth, no facets" (but sometimes looks like a lumpy potato)

C^{2} continuous

- looks more polished: smooth specular highlights

C^{2} almost everywhere

Measures of Joint

 SmoothnessParametric continuity:

- continuous by parameter t
- useful for trajectories

- $0^{\text {th }}$ order, C^{0}
curve segments meet (join point): $\mathbf{f}_{2}(0)=\mathbf{f}_{1}(1)$
- $1^{\text {st }}$ order, C^{1}
$1^{\text {st }}$ derivatives, velocities, are equal at join point: $\mathbf{f}_{2}{ }^{\prime}(0)=\mathbf{f}_{1}{ }^{\prime}(1)$
- $2^{\text {nd }}$ order, C^{2}
$2^{\text {nd }}$ derivatives, accelerations, are equal at join point

Hodgins,Marschner

Measures of Joint Smoothness

Geometric continuity:

- continuous by parameter s (arclength)
- useful for defining shapes
- $1^{\text {st }}$ order, G^{1}
$1^{\text {st }}$ derivatives, tangents, are in the same direction and of proportional magnitude at join point: $\mathbf{f}_{2}{ }^{\prime}(0)=k \mathbf{f}_{1}{ }^{\prime}(1), k>0$

- $2^{\text {nd }}$ order, G^{2}
$2^{\text {nd }}$ derivatives, curvatures, are proportional at join point

$\Rightarrow G^{n}$ continuity is usually a weaker constraint than C^{n} continuity (e.g., the "speed" along the curve does not matter)

But neither form of continuity is guaranteed by the other

G^{1} not C^{1}

G^{1} but not C^{1} when tangent direction doesn't change, but the magnitude changes abruptly

Rockwood et al., Marschner, FvD

Cubic Splines

A representation of cubic spline consists of:

- four control points (why four?)
- these are completely user specified
- determine a set of blending functions

There is no single "best" representation of cubic spline:

Cubic	Interpolate?	Local?	Continuity	Affine?	Convex*?	VD*?
Hermite	\checkmark	\checkmark	C^{1}	\checkmark	n/a	n/a
Cardinal (Catmull-Rom)	except endpoints	\checkmark	C^{1}	\checkmark	no	no
Bézier	endpoints	x	C^{1}	\checkmark	\checkmark	\checkmark
natural	\checkmark	x	C^{2}	\checkmark	n/a	n/a
B-splines	x	\checkmark	C^{2}	\checkmark	\checkmark	\checkmark

* n/a when some of the control "points" are tangents, not points

C^{1} not G^{1}

When the curve $\mathbf{p}(t)$ goes
 to zero, velocity changes direction, and starts again

Bézier Curve

Named after Pierre Bézier, a car designer at Renault

Independently developed by Paul de Casteljau at Citroën

Has an intuitive geometric "feel", easy to control

- common interface for creating curves in drawing programs
- used in font design (Postscript)

Bézier Curve

Uses an arbitrary number of control points (not just cubic)

- the first and last control points interpolate the curve

- the rest approximate the curve, control point i exerts the strongest attraction at $u=i / n, 1 \leq i<n-1,0 \leq u \leq 1$
- tangent at the start of the curve is proportional to the vector between the first and second control points
- tangent at the end of the curve is proportional to the vector between the second last and last control points
- the n-th derivative at the start (end) of the curve depends on the first (last) $n+1$ control points

de Casteljau Quadratic Bézier

A quadratic Bézier curve has 3 control points
Let $u=4 / 5$
$\mathbf{p}_{k}=\mathbf{p}_{0}+\frac{4}{5}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)=\frac{1}{5} \mathbf{p}_{0}-\frac{4}{5} \mathbf{p}_{1}$
$\mathbf{q}_{0}=\frac{1}{5}\left(\frac{1}{5} \mathbf{p}_{0}+\frac{4}{5} \mathbf{p}_{1}\right)+\frac{4}{5}\left(\frac{1}{5} \mathbf{p}_{1}+\frac{4}{5} \mathbf{p}_{2}\right)$

Or more generally:
$\mathbf{f}(u)=(1-u)\left((1-u) \mathbf{p}_{0}+u \mathbf{p}_{1}\right)+u\left((1-u) \mathbf{p}_{1}+u \mathbf{p}_{2}\right)$
which is the quadratic Bézier curve:
$\mathbf{f}(u)=(1-u)^{2} \mathbf{p}_{0}+2 u(1-u) \mathbf{p}_{1}+u^{2} \mathbf{p}_{2}$

de Casteljau Algorithm

A geometric evaluation scheme for Bézier: creates Bézier curve iteratively
To compute $\mathbf{f}(u)$:

- connect adjacent control points with straight lines into a control polygon
- create the u interpolate points, $u \in[0,1]$, on these lines
- at each iteration, there are n - 1 such points
- connect the new points with straight lines
- repeat until only one new point is created

de Casteljau Cubic Bézier

Given four control points $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$, use
de Casteljau algorithm to build a cubic Bézier curve $\mathbf{f}(u), 0 \leq u \leq 1$, with $\mathbf{p}_{0}=\mathbf{f}(0), \mathbf{p}_{3}=\mathbf{f}(1)$ as shown:

$$
\mathbf{f}(u)=(1-u)^{3} \mathbf{p}_{0}+3 u(1-u)^{2} \mathbf{p}_{1}+3 u^{2}(1-u) \mathbf{p}_{2}+u^{3} \mathbf{p}_{3}
$$

de Casteljau Cubic Bézier

Draw out the curve by sweeping through time

$\mathbf{f}(u)=(1-u)^{3} \mathbf{p}_{0}+3 u(1-u)^{2} \mathbf{p}_{1}+3 u^{2}(1-u) \mathbf{p}_{2}+u^{3} \mathbf{p}_{3}$
Then set:
$\mathbf{f}^{\prime}(0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)$
$\mathbf{f}^{\prime}(1)=3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)$

Cubic Bézier Curve

$$
\mathrm{u} \mathbf{B}=\sum_{i=0}^{n} b_{i}(u)
$$

Blending functions:

$$
\begin{aligned}
\mathbf{f}(u) & =\quad(1-u)^{3} \mathbf{p}_{0}+\quad 3 u(1-u)^{2} \mathbf{p}_{1}+3 u^{2}(1-u) \mathbf{p}_{2}+u^{3} \mathbf{p}_{3} \\
& =\underbrace{\left(1-3 u+3 u^{2}-u^{3}\right)}_{b_{0,3}(u)} \mathbf{p}_{0}+\underbrace{\left(3 u-6 u^{2}+3 u^{3}\right)}_{b_{1,3}(u)} \mathbf{p}_{1}+\underbrace{\left(3 u^{2}-3 u^{3}\right) \mathbf{p}_{2}}_{b_{2,3}(u)}+\underbrace{u^{3} \mathbf{p}_{3}}_{b_{3,3}^{3}(u)}
\end{aligned}
$$

Cubic Bézier Curve

Control points consist of endpoint interpolations and derivatives:

$$
\begin{array}{rlrl}
\mathbf{f}(u) & =\mathbf{a}_{0}+u^{1} \mathbf{a}_{1}+u^{2} \mathbf{a}_{2}+u^{3} \mathbf{a}_{3} \\
\mathbf{p}_{0} & =\mathbf{f}(0)=\mathbf{a}_{0}+0^{1} \mathbf{a}_{1}+ & 0^{2} \mathbf{a}_{2}+ & 0^{3} \mathbf{a}_{3} \\
\mathbf{p}_{3} & =\mathbf{f}(1)=\mathbf{a}_{0}+1^{1} \mathbf{a}_{1}+ & 1^{2} \mathbf{a}_{2}+ & 1^{3} \mathbf{a}_{3} \\
3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) & =\mathbf{f}^{\prime}(0)=\quad \mathbf{a}_{1}+2 * 0^{1} \mathbf{a}_{2}+3^{*} 0^{2} \mathbf{a}_{3} \\
\mathbf{p}_{1} & =\frac{1}{3}\left(\mathbf{f}^{\prime}(0)+3 \mathbf{p}_{0}\right)=\mathbf{a}_{0}+\frac{1}{3} \mathbf{a}_{1}+0^{2} \mathbf{a}_{2}+0^{3} \mathbf{a}_{3} \\
3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right) & \left.=\mathbf{f}^{\prime}(1)=\quad \begin{array}{lccc}
\mathbf{a}_{1}+2 * 1^{1} \mathbf{a}_{2}+3^{*} 1^{2} \mathbf{a}_{3} \\
\mathbf{p}_{2} & =\frac{1}{3}\left(3 \mathbf{p}_{3}-\mathbf{f}^{\prime}(1)\right)=1 \mathbf{a}_{0}+\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}-0 \mathbf{a}_{3}
\end{array} \quad \begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 / 3 & 0 & 0 \\
1 & 2 / 3 & 1 / 3 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \\
\end{array}
$$

Basis matrix:

$$
\mathbf{B}=\mathbf{C}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right]
$$

Cubic Bézier Properties

Properties:

- each b_{i} specifies the influence of \mathbf{p}_{i}
- convex hull: $\sum b_{i}=1, b_{i} \geq 0$
- interpolates only at \mathbf{p}_{0} and \mathbf{p}_{3}
- $b_{0}=1$ at $u=0, b_{3}=1$ at $u=1$
- b_{1} and b_{2} never reach 1
- the basis functions are everywhere non-zero, except at the end points \Rightarrow the control points do not exert local control
- the curves are symmetric: reversing the control points yields the same curve

Non-Local Control

Every control point affects every point on the curve (except the endpoints)

Moving a single control point affects the whole curve!

Bernstein Basis Polynomials

The blending/basis functions for Bézier curves can in general be expressed as the Bernstein basis polynomials:

$$
b_{k, n}(u)=\binom{n}{k} u^{k}(1-u)^{n-k}=\frac{n!}{k!(n-k)!} u^{k}(1-u)^{n-k}
$$

Bézier curve eqn: $\mathbf{f}(u)=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} u^{k}(1-u)^{n-k} \mathbf{p}_{k}$

Variation Diminishing Property

Bézier curves have the variation diminishing property: each is no more "wiggly" than its control polygon \Rightarrow does not cross a line more than its control polygon

Various Bézier curves, of degrees 2-6:

Joining Bézier Curves

Multiple-segment cubic Bézier curve can achieve

- G^{1} continuity if: $\mathbf{q}_{0}=\mathbf{f}_{2}(0)=\mathbf{f}_{1}(1)=\mathbf{p}_{3}$ and $\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)=k\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)$, the three points ($\mathbf{p}_{2 \prime}, \mathbf{p}_{3}=\mathbf{q}_{0}$, and \mathbf{q}_{1}) are collinear
- if you changed one of these three, you must change the others, but only need to change these three, not \mathbf{p}_{1} for example \Rightarrow local support
- C^{1} continuity if $k=1$

- can't guarantee C^{2} or higher continuity
- each additional degree of continuity restricts the position of an additional control point \rightarrow cubic Bézier has none to spare

Bézier Curve/Surface Problems

To make a long continuous curve with Bézier segments requires using many segments

Maintaining continuity requires constraints on the control point positions

- the user cannot arbitrarily move control points and automatically maintain continuity
- the constraints must be explicitly maintained
- it is not intuitive to have control points that are not free

Consider: B-spline

