
EECS	487:	Interactive	

Computer	Graphics	
Lecture	36:	Parametric	surfaces	

•  Swept	surfaces	

•  Geometric	continuity	

•  Bézier	curves	and	patches	

Extruded/Swept	Surfaces	

Yu,Terzopoulos	

Consider	a	curve	in	space	as	being	swept	out	

by	a	moving	point:	p(u) = [x(u) y(u) z(u)]T

• as	we	vary	u	the	point	moves	through	space	

• the	curve	is	the	path	taken	by	the	point	
	

Similarly	we	can	think	of	a	surface:	

s(u, t) = [x(u, t) y(u, t) z(u, t)]T	

• as	being	swept	out	by	a	profile	curve	

along	a	trajectory	curve	

• the	set	of	points	visited	by	the	curve	
during	its	motion	defines	the	surface	

General	Sweep	Surfaces	

Fussell,Durand,Terzopoulos	

Trajectory	path	may	be	any	arbitrary	curve	

The	profile	curve	may	be	transformed	

as	it	moves	along	the	path	

• scaled,	rotated	with	respect	to	path	orientation,	…	

Example:	surface	s(u, t) is	formed	by	a	profile	

curve	in	the	xy-plane	p(u) = [x(u) y(u) 0 1] T 

extruded	along	the	z-axis:	
s(u, t): T(t)p(u):	
x(u, t) = x(u), y(u, t) =  y(u), 0 ≤ u ≤ 1, 
z(u, t) =  t, zmin ≤ t ≤ zmax 

Extruded/Swept	Surfaces	

Different	profile	curves,	

same	trajectory	curve	

Schulze	



Surfaces	of	Revolution	

Schulze,Durand	

Use	rotation	around	an	

axis	instead	of	translation	

along	a	path	

• or,	extrusion	where	the	

trajectory	curve	is	a	circle 
• s(u, t): R(t)p(u)	

A	Banana	as	a	Generalized	Cylinder	

What	we	specify	

•  a	mostly	circular	profile	

•  a	spine	for	the	banana	
•  a	scaling	function	

Periodically	along	the	spine	

•  place	a	cross	section	
•  scale	it	appropriately	
•  connect	to	previous	section	

cross	section 	scaling	function	

Yu,Snyder	

General	Sweep	Surfaces	

The	trajectory	curve	is	like	a	spine	

•  sweeping	the	profile	curve	“skins”	a	surface	around	the	

trajectory	curve	

•  the	shape	of	the	spine	controls	the	shape	of	the	object	

•  nice	for	animation:	
•  don’t	have	to	control	the	surface	
•  just	reshape	the	spine	and	the	surface	follows	along	

Yu,Chenney,Terzopoulos	

General	Sweep	Surfaces	

For	every	point	along	q(t),	lay	p(u)	so	that	op	coincides	
with	q(t)	

	

	

	

	

	

This	gives	us	locations	along	q(t),	how	about	orientation?	

1.  fixed	or	static:	aligns	p(u)	with	an	axis	

2.  allows	smoothly	varying	orientation	that	“follows”	the	

orientation	of	q(t):	how	to	specify	the	orientation	of	q(t)?	

p(u) 
q(t) 

op 

Curless	

p(u) 

q(t) 

op 

s(u, t) 



Differential	Geometry	of	Curves	

Uses:	

• define	orientation	of	swept	surfaces	

•  compute	velocity	of	animation	

•  compute	normals	of	surfaces	

•  analyze	smoothness/continuity	

Tangent:	

The	velocity	of	movement,	1st	derivative	with	respect	to	t
q’(t) = (x’(t), y’(t), z’(t))	or	q’(t) ≈ (q(t+Δt) – q(t))/Δt
•  ||q’(t)||	is	the	speed	of	movement	

•  normalized	tangent	t(t) = q’(t)/||q’(t)||	is	the	direction	of	movement	

•  the	numeric	form	of	forward	difference	is	useful	if	q(t)	is	a	black	box	

The	tangent	provides	us	with	the	first	of	three	

orientations	for	swept	surfaces	

Durand	

For	smooth	motion,	we	want	continuous	1st	and	2nd	

derivatives	with	respect	to	time	dq/dt

But	to	describe	shape,	we	could	ask	for	continuity	

with	respect	to	equal	steps	(arc	length):	dq/ds

Arc	length	parameterization:	

equal	steps	in	parameter	

space	s	maps	to	equal	

distances	along	the	curve	

•  intrinsic	to	shape	of	curve,	
not	dependent	on	any	particular	coordinate	system	

Arc	Length	Parameterization	

TP3,	Hart	 [Curless]	

q(t) q(s) 

If	s	is	the	length	of	curve	from	q(0)	to	q(t),	
q(s) can	be	expressed	in	terms	of	t:	
q(s) = {q(t): s(t) = s},	e.g.,		
	

Unless	moving	at	constant	

speed,	arc	length	

travelled	is	not	

proportional	to	passing	time:		

•  i.e.,	equal	steps	in	time	(t)	does	not	necessarily	
give	equal	distances	in	arc	length	(s)	

Arc	Length	Parameterization	

TP3,	Hart,	Curless	

q(t) q(s) 

t = 0, s = s(0) = 0

t = 1, s = s(1) = curve	length	

  
s(t) = q '(τ ) dτ

0

t

∫ = x '(τ )2 + y '(τ )2 + z '(τ )2 dτ
0

t

∫
usually	

cannot	be	

evaluated	

analytically	

Instead:	

•  pre-compute	a	set	of	variable	arc	lengths	si	for	points	on	the	

curve	using	t	parameterization	

•  to	find	the	corresponding	point	(pk)	

on	the	curve	for	a	given	sk,	linearly	

interpolate	the	points	of	the	2	
nearest	arc	lengths	to	either	side	

si	and	si+1,	si ≤ sk ≤ si+1:	

Arc	Length	by	Linear	Interpolation	

   
pk =

si+1 − sk

si+1 − si

 pi +
sk − si

si+1 − si

pi+1

TP3	



Curvature	and	Normal	

low	curvature	

high	curvature	
Durand	

Curvature	(κ):	derivative	of	tangent	
with	respect	to	arc	length	(dt(s)/ds)	
•  how	fast	the	curve	pulls	away	

from	a	straight	line	

•  always	orthogonal	to	tangent	

•  constant	for	a	circle	
•  zero	for	a	straight	line	
	

Normal:	normalized	curvature	

•  vector	points	to	the	
center	of	curvature	

•  the	2nd	of	3	orientations	
for	swept	surfaces	

Torsion	and	Binormal	

Béchet	

Torsion:	deviation	of	the	curve	

from	the	plane	formed	by	the	

tangent	and	normal	vectors	

•  zero	for	a	plane	curve	
•  binormal	vector	points	to	the	winding	

direction	of	the	space	curve	

•  the	3rd	of	3	orientations	for	swept	surfaces	

A	curve	is	a	1D	manifold	in	a	space	of	higher	dimension	

• Plane	(2D)	curves,	described	by:	

•  position,	tangent,	curvature	

• Space/skew	(3D)	curves,	described	by:	
•  position,	tangent,	curvature,	torsion	

Frenet	Frame	

Given	a	curve q(t)	we	can	attach	a	smoothly	varying	

coordinate	system	consisting	of	three	basis	vectors	

(reparameterized	to	arc	length):	

•  tangent:	t(s) = q’(s(t))	(normalized)	

•  normal:	n(s) = t’(s)/||t’(s)||	
•  binormal:	b(s) = n×t	

Due	to	Jean	Frédéric	Frenet	(1847)	
and	Joseph	Alfred	Serret	(1851)	
	

As	we	move	along	q(t),	the	Frenet	
frame	(t(s),	b(s),	n(s))	varies	smoothly	

Curless	

q(t) 

q’(s) 

q’’(s) 

normal	plane	

formed	by	n	and	b

osculating	plane	

formed	by	n	and	t

Frenet	Swept	Surfaces	

Curless,wikipedia	

Orient	the	profile	curve p(u)	using	
the	Frenet	frame	of	the	trajectory	q(t)	
•  put	p(u)	in	the	normal	plane	of	q(t)	
•  place	op	on	q(t)	
•  align	px(u)	with	b
•  align	py(u)	with	−n

If	q(t)	is	a	circle,	you	get	a	surface	of	revolution	exactly!	

q(t) 

py(u) 

px(u) 

op 

p(u) 



Variations	

Curless,Funkhouser	

q(t) 

p(u) 

q 

b t 

n 

Several	variations	are	possible:	

•  scale	p(u)	as	it	moves,	

possibly	scaled	to	||q(t)||	
• morph	p(u)	into	some	other	curve	

f(u)	as	it	moves	along	q(t)	

Problems	with	Swept	Surfaces	

What	happens	at	inflection	points?	

•  curvature	goes	to	zero	
•  then	normal	flips!	

•  resulting	in	a	non-smooth	swept	surface	

Also,	difficult	to	avoid	self-intersection	

Curless,Fussell,Durand,Chenney	

Free-form	Surfaces	

Swept	surfaces	are	great,	but	we	would	

like	to	represent	“free-form”	(asymmetric,	

irregular)	curves	and	surfaces	

	

We	would	also	like	to	give	model	builders	

an	intuitive	control	of	a	smooth	shape	

•  specify	objects	with	a	few	control	points	

•  resulting	in	visually	pleasing	(smooth)	objects	

Schulze	

CAGD	(Computer-Aided	Geometric	Design):	

area	of	CG	dealing	with	free-form	shapes	

	

1960’s:	
•  the	need	for	mathematical	representations	of	free-form	

shapes	became	apparent	in	the	automotive	and	

aeronautic	industries	

•  Paul	de	Casteljau	&	Pierre	Bézier	independently	
developed	the	theory	of	polynomial	curves	&	surfaces		

•  which	became	the	basic	tool	for	describing	and	rendering	

free-form	shapes	

Polynomial	Surfaces	

TP3	



Parametric	Patches	

Parametric	curves	and	surfaces	give	and	require	

fewer	degrees	of	control	than	polygonal	meshes	

•  users	control	a	few	points	

•  program	smoothly	fills	in	the	rest	

•  representation	provides	analytical	
expressions	for	normals,	tangents,	etc.	

Surface	is	partitioned	into	patches:	

• piecewise	parametric	surfaces	(3D	splines)	

• each	defined	by	control	points	forming	

a	control	net	

Most	popular	for	modeling	are	

Bézier,	B-splines,	and	NURBS	

• we’ll	study	these	as	2D	splines	first,	

then	we’ll	use	them	as	3D	patches	
Funkhouser,	FvDFH	Fig.	11.44

Measures	of	Joint	

Smoothness	

Parametric	continuity:	

• continuous	by	parameter	t
• useful	for	trajectories	
• 0th	order,	C0�
curve	segments	meet	(join	point):	f2(0) = f1(1)

• 1st	order,	C1�

1st	derivatives,	velocities,	are	equal	at	join	point:	f2’(0) = f1’(1)

• 2nd	order,	C2�

2nd	derivatives,	accelerations,	are	equal	at	join	point	

y (t )

x(t )

S
C1C0

C2

Join point

Foley,	van	Dam	92	

� 

C1

� 

C0

� 

C2
y(t)

x(t)

Hodgins,Marschner	

C0 C1 C2 

Joint	Smoothness	

C0	continuous	

•  curve/surface	has	no	breaks/gaps/holes	
• model	is	“watertight”	

C1	continuous	

• model	“looks	smooth,	no	

facets”	(but	sometimes	

looks	like	a	lumpy	potato)	

C2	continuous	

•  looks	more	polished:	

smooth	specular	highlights	

Durand	
C2	almost	everywhere 	C1	only	

C 0

C1

C2

G1

G2

Measures	of	Joint	Smoothness	

Geometric	continuity:	

• continuous	by	parameter	s (arclength)	
• useful	for	defining	shapes	

• 1st	order,	G1	

1st	derivatives,	tangents,	are	in	the	same	

direction	and	of	proportional	magnitude	

at	join	point:		f2’(0) = k f1’(1), k > 0

• 2nd	order,	G2	

2nd	derivatives,	curvatures,	

are	proportional	at	join	point	

� Gn	continuity	is	usually	a	weaker	constraint	than	Cn	continuity	

	(e.g.,	the	“speed”	along	the	curve	does	not	matter)	

	

But	neither	form	of	continuity	is	guaranteed	by	the	other	
Shirley,Marschner	



G1	but	not	C1	when	tangent	direction	doesn’t	change,	

but	the	magnitude	changes	abruptly	

y (t )

x (t )

P1
P2

Q3
P3

Q2
Q1

TV2

TV3

� 

C1
� 

G1

y(t)

x(t)

Rockwood	et	al.,	Marschner,	FvD	

G1	not	C1	 C1	not	G1

Rockwood	et	al.,	Marschner	

When	the	curve	p(t)	goes	
to	zero,	velocity	changes	

direction,	and	starts	again	

p(t) 

Cubic	Splines	

A	representation	of	cubic	spline	consists	of:	

•  four	control	points	(why	four?)	

•  these	are	completely	user	specified	

•  determine	a	set	of	blending	functions	

	

There	is	no	single	“best”	representation	of	cubic	spline:	

	

	

	

	

	

	

	

	

*	n/a	when	some	of	the	control	“points”	are	tangents,	not	points	

Cubic	 Interpolate?	 Local?	 Continuity	 Affine?	 Convex*?	 VD*?	

Hermite	 �	 �	 C1 �	 n/a	 n/a	

Cardinal	

(Catmull-Rom)	

	except	

endpoints	

�	 C1 �	 no	 no	

Bézier	 endpoints	 �	 C1 �	 �	 �	

natural	 �	 �	 C2 �	 n/a	 n/a	

B-splines	 �	 �	 C2 �	 �	 �	

Watt	

Bézier	Curve	

Named	after	Pierre	Bézier,		

a	car	designer	at	Renault	

	

Independently	developed	by	

Paul	de	Casteljau	at	Citroën	

	

Has	an	intuitive	geometric	“feel”,	

easy	to	control	
•  common	interface	for	creating	curves	in	

drawing	programs	

• used	in	font	design	(Postscript)	

Foley	&	van	Dam	



Bézier	Curve	

Uses	an	arbitrary	number	of		

control	points	(not	just	cubic)	

• the	first	and	last	control	points	
interpolate	the	curve	

• the	rest	approximate	the	curve,	control	point	i	exerts	the	
strongest	attraction	at	u = i/n, 1 ≤ i < n−1, 0 ≤ u ≤ 1

• tangent	at	the	start	of	the	curve	is	proportional	to	
the	vector	between	the	first	and	second	control	points	

• tangent	at	the	end	of	the	curve	is	proportional	to	the	
vector	between	the	second	last	and	last	control	points	

• the	n-th	derivative	at	the	start	(end)	of	the	curve	depends	
on	the	first	(last)	n+1	control	points

p0

p1

p2

p3

p1
-p

0

p3-p2

f’(0)=3(p1-p0)

f’(1)=3(p3-p2)

cubic	

Shirley	

de	Casteljau	Algorithm	

A	geometric	evaluation	scheme	for	Bézier:	

creates	Bézier	curve	iteratively	

To	compute	f(u):	
•  connect	adjacent	control	points	with	

straight	lines	into	a	control	polygon	

•  create	the	u	interpolate	points,	
u ∈ [0,1],	on	these	lines		
•  at	each	iteration,	there	are	n-1	such	points	

•  connect	the	new	points	with	straight	lines	

•  repeat	until	only	one	new	point	is	created	

u

u

u

1–u 1–u

1-u

1–u

u
1–u

1–u

uu

de	Casteljau	Quadratic	Bézier	

4/5 

1/5 4/5 

1/5 
1/5 

4/5 

quadratic	

	

Let	u = 4
5

pk = p0 + 4
5 (p1 − p0 ) = 1

5 p0 − 4
5 p1

q0 = 1
5 ( 15 p0 + 4

5 p1)+ 4
5 ( 15 p1 + 4

5 p2 )
Or	more	generally:

f (u) = (1− u)((1− u)p0 + up1)+ u((1− u)p1 + up2 )
which	is	the	quadratic	Bézier	curve:

f (u) = (1− u)2p0 + 2u(1− u)p1 + u
2p2

A	quadratic	Bézier	curve	has	3	control	points	

de	Casteljau	Cubic	Bézier	
Given	four	control	points	p0, p1, p2, p3,	use	

de	Casteljau	algorithm	to	build	a	cubic	Bézier	curve	

f(u), 0 ≤ u ≤ 1,	with	p0 = f(0), p3 = f(1)	as	shown:	

1

2 3

4 1

2 3

4

� 

p0

� 

p1

� 

p2

� 

p3

q0 = p0 + u p1 − p0( )
= (1− u)p0 + up1

q1 = (1− u)p1 + up2
q2 = (1− u)p2 + up3 u = ½

u = ¼
u = ¾

1–u

u

u

1–u

u 1–u

q0

q1

q2

u

1–u u

1–u
r0 r1u 1–u

f(u)

r0 = (1− u)q0 + uq1
r1 = (1− u)q1 + uq2

f(u) = (1− u)r0 + ur1
f(u) = (1− u)3p0 + 3u(1− u)

2p1 + 3u
2 (1− u)p2 + u

3p3



Draw	out	the	curve	by	sweeping	through	time	

de	Casteljau	Cubic	Bézier	

[wikipedia]	

f(u) = (1− u)3p0 + 3u(1− u)
2p1 + 3u

2 (1− u)p2 + u
3p3

Then	set:

f '(0) = 3(p1 − p0 )
f '(1) = 3(p3 − p2 )

Cubic	Bézier	Curve	

Control	points	consist	of	endpoint	interpolations	and	

derivatives:	

	

	Constraint	matrix	

	

	

Basis	matrix:	

C =

1 0 0 0
1 1

3 0 0
1 2

3
1
3 0

1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B = C−1 =

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

f(u) = a0 + u
1a1 + 				u2a2 + 				u3a3

p0 = f(0)	 = a0 + 0
1a1 + 				02a2 + 				03a3

p3 = f(1)	 = a0 + 	11a1 + 					12a2 + 					13a3
3(p1 − p0 ) = f '(0) = 													a1 + 2*0

1a2 + 3*0
2a3

p1 = 1
3 (f '(0)+ 3p0 ) = a0 + 1

3 a1 + 0
2a2 + 0

3a3
3(p3 − p2 ) = f '(1) = 														a1 + 2* 	1

1a2 + 3*1
2a3

p2 = 1
3 (3p3 − f '(1)) =1a0 + 2

3 a1 + 1
3 a2 − 0a3

Blending	functions:	

	

	

	

	

	

	

	

	

	

	

	

Cubic	Bézier	Curve	

Watt,	Hodgins	

f (u) =                (1− u)3p0 +          3u(1− u)2p1 +   3u2 (1− u)p2 + u
3p3

= (1− 3u + 3u2 − u3 )p0 + (3u − 6u
2 + 3u3 )p1 + (3u

2 − 3u3 )p2 + u
3p3

x 

y

b(u)

u

uB = bi (u)
i=0

n

∑

b0,3(u)

b0,3(u)

b1,3(u)

b1,3(u)

b2,3(u)

b2,3(u)

b3,3(u)

b3,3(u)

Cubic	Bézier	Properties	

Properties:	

•  each	bi	specifies	the	influence	of pi

•  convex	hull:	∑bi = 1, bi ≥ 0
•  interpolates	only	at	p0	and	p3
•  b0 =	1	at	u = 0,	b3 =	1	at	u = 1	
•  b1	and	b2 never	reach	1

•  the	basis	functions	are	everywhere	

non-zero,	except	at	the	end	points	

�	the	control	points	do	not	exert	

local	control		

•  the	curves	are	symmetric:	reversing	

the	control	points	yields	the	same	

curve	

b0 

b1           b2 

b3 

u 

b(u) 

u = 1 
u = 0 

p0 

p2 

p3 

p1 

Durand,Hodgins	



Watt	

Non-Local	Control	

Every	control	point	affects	every	point	

on	the	curve	(except	the	endpoints)	

	

Moving	a	single	control	point	affects	

the	whole	curve!	

Curless	

Variation	Diminishing	Property	

Bézier	curves	have	the	variation	diminishing	property:	

each	is	no	more	“wiggly”	than	its	control	polygon	

�	does	not	cross	a	line	more	than	its	control	polygon	

	

Various	Bézier	curves,	of	degrees	2-6: 

Shirley	

Bernstein	Basis	Polynomials	

The	blending/basis	functions	for	Bézier	curves	can	

in	general	be	expressed	as	the	Bernstein	basis	

polynomials:		

	

	

	

	

Bézier	curve	eqn:	

bk,n (u) =
n
k

⎛
⎝⎜

⎞
⎠⎟
uk (1− u)n−k = n!

k!(n − k)!
uk (1− u)n−k

f(u) = n!
k!(n − k)!

uk (1− u)n−kpk
k=0

n

∑

Shirley	

Multiple-segment	cubic	Bézier	curve	can	achieve	

•  G1	continuity	if:	q0 = f2(0) = f1(1) = p3	

and	(q1 − q0) = k(p3 − p2),	the	three	
points	(p2,	p3 = q0,	and	q1)	are	collinear	

•  if	you	changed	one	of	these	three,	
you	must	change	the	others,	but	only	

need	to	change	these	three,	

not	p1	for	example	�	local	support	

•  C1	continuity	if	k = 1

•  can’t	guarantee	C2	or	higher	continuity	
•  each	additional	degree	of	continuity	restricts	the	position	of	an	
additional	control	point	�	cubic	Bézier	has	none	to	spare	

� 

p3 = q0� 

p2

� 

q1
� 

f1(u)

� 

f 2(u)

Joining	Bézier	Curves	

Shirley	



Bézier	Curve/Surface	Problems	

To	make	a	long	continuous	curve	with	Bézier	

segments	requires	using	many	segments	

	

Maintaining	continuity	requires	constraints	on	the	

control	point	positions	

•  the	user	cannot	arbitrarily	move	control	points	and	

automatically	maintain	continuity	

•  the	constraints	must	be	explicitly	maintained	

•  it	is	not	intuitive	to	have	control	points	that	are	not	free	
	

Consider:	B-spline	


