
EECS	487:	Interactive	
Computer	Graphics	

Lecture	33:		
•  Keyframe	interpolation	and	splines	
•  Cubic	splines	

Interpolating	Key	Values	

The	key	values	of	each	variable	may	
occur	at	different	frames	
	
	
The	interpolation	of	key	values	of	a	
variable	defines	a	curve	

Frame positions
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Hodgins	

Potential	Problem	with	Interpolation	
The	curve	may	undershoot	and	cause	inter-penetration	
Solution:	add	key	frames	(=	control	points)!	

Motion	Control	Curve	
Given	the	key	frames,	how	would	you	mathematically	
represent	a	control	curve	that	interpolates	(passes	
through)	the	control	points?	



Motion	Control	Curve	
We	don’t	want	motion	with	
• unnatural	(painful)	twists	and	bends	
•  jerkiness	

Desired	characteristics	of	the	
motion	control	curve:	
• user	controlled	with	control	points	
• defines	a	smooth	and	continuous	curve	
•  ability	to	evaluate	derivatives	
•  stable:	doesn’t	cross	over	itself	
•  local	control	of	curve	shape	
•  change	to	one	part	of	the	curve	
doesn’t	effect	the	entire	curve	

Hodgins	

Which	representation	
of	curves	has	these	
characteristics?	

Representation	of	Curves	
Polyline:	piecewise	linear	curves	
•  given	a	sequence	of	vertices	(control	points)
•  connect	each	pair	of	consecutive	vertices	
with	a	line	segment	
 a	smooth	curve	will	need	a	continuous	
set	of	points	on	the	plane	(or	in	space)	
 hard	to	get	precise,	smooth	results	
 too	much	data,	too	hard	to	work	with	

Explicit:	y = f (x)
+ easy	to	generate	points	
 single-valued	for	each	x 
 must	be	a	function:	big	limitation,	
e.g.,	vertical	lines?	
 rotations	completely	change	representation	
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Representation	of	Curves	

Implicit:	f (x,	y) = 0	
+  supports	multiple	values	for	each	x 
+  easy	to	test	if	on,	or	to	either	side,	of	curve	
 hard	to	generate	points	

Parametric:	(x,	y) = (f (u), g(u))
•  parameterization	of	a	curve	⩴	how	a	change	in	

u	moves	you	along	a	given	curve	in	xyz	space	
+  supports	multiple	values	for	each	x 
+  fairly	easy	to	generate	points	
+  can	describe	trajectories,	the	speed	
at	which	we	move	on	the	curve	

We	want	some	kind	of	parametric	
curve	to	control	motion!	

r

f (x, y) = x2 + y2 − r 2 = 0 

(x, y) = (r cos θ, r sin θ)

r
θ 

Schulze,Yu	

Define	a	mapping	from	parameter	space	
(e.g.,	u,	usually	∈ [0,1]),	to	points	in	2D,	3D,	etc.	
	
Parameter	space	mapping:	
•  1D:	f(u)	maps	u	to	points	on	curve	

•  2D:	[ f(u), g(u)]	maps	u	to	points	on	surface	

Parametric	Curves	

u0 1 mapping:	
f:u � (x, y, z)

Chenney	



In	general,	described	by	a	vector-valued	function,	
i.e.,	n	scalar	functions,	of	1D	parameter	space	
	
	
	
	
Tangent	of	the	curve,		
t(u) = p’(u) = [x’(u)  y’(u)  z’(u)]T,	
is	the	velocity	of	movement	and	
||t(u)||	is	the	speed	of	movement	

T(u) = t(u)/||t(u)||	
is	the	unit	tangent	of	the	curve	

Parametric	Curves	
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Foley,	Van	Dam,	Schulze	
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1st	curve	
	

2nd	curve	

p(u)
The	coordinate	functions	
can	be	any	function:	
• polynomials	of	arbitrary	degree	
•  trigonometric	functions	
• exponentiations	
•  logarithms	
• Fourier	series,	etc.	

We’ll	only	consider	polynomials;	
more	complex	functions	are	harder	to	deal	with	

Parameter	Mapping	
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2nd	curve	

p(u)

Linear	(1st	order):	
f (u) = a0 + a1u 

Quadratic	(2nd	order):	
f (u) = a0 + a1u + a2u2

Cubic	(3rd	order):	
f (u) = a0 + a1u + a2u2 + a3u3

Polynomial	Functions	
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Schulze	

Quadratic:	

f(u) = a0 + a1u + a2u2

Cubic:	

f(u) = a0 + a1u + a2u2 + a3u3
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Parametric	Polynomial	Curves	
Linear:	f(u) = a0 + a1u, 0 ≤ u ≤ 1	
Evaluated	as:	

x 

y
z

Schulze	

x 

y
z

a0 

a1 

x 

y
z



Canonical	Form	

 

f (u) = a0 + u
1a1 + u

2a2 + ...+ u
n−1an−1,

= uiai
i=0

n−1

∑ ,

= ua,

u = 1 u u2 ... uk⎡⎣ ⎤⎦,

u ∈ 0,1[ ]

Splines	have	the	canonical	form:	

Schulze	

Even	restricted	to	polynomial	functions,	the	same	
parametric	curve	may	have	multiple	descriptions	

Non-unique	

O’Brien	

p(u) = [u u]T 	p(u) = [u3 u3]T 

Lagrange	Interpolation	

8-degree	polynomial	

u

x (u)

u

x (u)

Durand,Hodgins	

Problem:	given	n+1	control	points,	how	do	we	define	a	
parametric	curve	that	interpolates	all	points?	

An	n-degree	polynomial	(Lagrange	polynomial)	can	
interpolate	any	n+1	points	

Problem:	small-degree	Lagrange	polynomials	are	fine	
but	high	degree	ones	are	too	wiggly	

10-degree	polynomial	

A	spline	is	a	piecewise	parametric	polynomial	function	

Many	low	degree	(mostly	cubic)	splines	can	be	pieced	
together	to	interpolate	a	given	set	of	control	points,	
with	guaranteed	continuity	

Piecewise	definition	gives	local	control	of	curve	
	
	
	
	
	
	
	
Demo:	http://www.math.ucla.edu/~baker/java/hoefer/TwoDemos.htm	

Introducing	.	.	.	Splines	

8-degree	polynomial	 joined	splines	 splines	vs.	polynomial	
u

x (u)

Durand	



Splines	
Originally	used	by	draftsmen	(draughtsmen	
in	English,	loftsmen	in	shipbuilding)	to	draw	
life-size	curves	

Physically,	a	stiff	piece	of	metal	that	can	be	bent	into	
desired	shape	for	tracing,	and	held	in	place	with	“ducks”	
• (the	mathematical	equivalent	of	these	
metal	strips	is	the	natural-cubic	spline)	

Splines	
Many	uses	in	CG:	
•  2D	illustration	(e.g.,	Adobe	Illustrators)	
•  font	definition	
•  3D	modeling	
•  color	ramps	
•  animation:	trajectories	
•  in	general,	interpolate	keyframes	

control	
points	

Durand,Marschner,Hanrahan	

Advantages	of	Splines	

Specified	by	a	few	control	points	
•  efficient	for	UI	
•  efficient	for	storage	

Gives	a	smooth	parametric	polynomial	curve	p(u)
•  defined	in	Cartesian	coordinates	by	x(u)	and	y(u)
•  convenient	for	animation	where	u	is	time	
•  convenient	for	tessellation	in	modeling	as	u	can	be	discretized	
and	the	curve	approximated	with	small	linear	segments	

Durand	

The	two	coefficients	of	a	first-order,	linear	polynomial	
can	be	determined	from	its	two	end-points:	
	
	
	
	
in	matrix	form:	
	
	
	
	
where	C	is	called	the	constraint	matrix

Linear	Splines	

f (u) = a0 + ua1
p0 = f (0) = a0 + 0a1 = a0
p1 = f (1) = a0 +1a1 = a0 + a1
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[Schulze,	wikipedia]	

Remember	that	
the	pi’s	and	ai’s	
are	themselves	
vectors	

p0 = f(0) 

p1 = f(1) 



Basis	Matrix	

Then	a = C–1p,		
	
	
	
	
Let’s	call	B = C–1	the	blending/basis	matrix	(for	reasons	
to	be	explained	later),	then:	

f(u) = ua = uBp
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Schulze	

a0 = p0
a1 = p1 − p0

Two	Views	of	Splines	

Zhang	
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f(u) = a0 + ua1
Coefficients	(ai’s)	can	be	
computed	from	control	
points	pi’s	
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f (u) = (1− u)p0 + up1

Each	point	on	the	curve	is	a	
linear	blending	of	the	
control	points	pi’s	

The	weights b0(u) = (1−u)	
and	b1(u) = u are	called	the	blending	functions	
	
	
	
expresses	the	polynomial	as	a	weighted	sum	
(combination)	of	the	control	points:	contribution	
of	each	point	as	u	changes	(and	we	don’t	have	to	
solve	for	the	a’s	(coefficient	vectors)!)	

f (u) = ua = uBp = (1− u)p0 + up1 = bi (u)pi
i=0

1

∑

b0(u)        b1(u) 

Schulze	

f (u) = (1− u)p0 + up1
b0(u) b1(u)

Blending	Functions	

Linear	interpolation:	object	moves	at	constant	speed	
•  in-between	values	at	equal	intervals	along	straight	lines	
	

Quadratic	interpolation	with	constant	speed	and	equal	
spacing	of	in-between	values	
	
	
	
	
	
Cubic	interpolation	with	acceleration	

Hodgins	

Non-linear	Interpolations	



Quadratic	(2nd	degree)	spline	
f(u) = a0 + a1u + a2u2	are	specified	
by	three	coefficients	and	can	be	
solved	by,	for	example,	
• three	points:	

• or	by	a	point	and	its	first	and	second	derivatives:	

Quadratic	Splines	

Zhang	

linear	quadratic	

 

p0 = f (0)   = a0 + 0
1    a1 + 0

2    a2
p1 = f (0.5) = a0 + 0.5

1a1 + 0.5
2a2

p2 = f (1)    = a0 +1
1    a1 +1

2     a2

p0 = f (0.5)  = a0 + u
1a1 + u

2a2  = a0 + 0.5
1a1 + 0.5

2    a2
p1 = f '(0.5) =           a1 + 2ua2  =              a1 + 2 *0.5a2
p2 = f ''(0.5) =                     2a2 =                             2a2  

The	control	points	are	the	
geometric	constraints	or	
boundary	conditions	and	
are	completely	user	specified	

User-Specified	Control	Points	
Given	control	points	p0,	p1,	p2,	the	quadratic	spline:	

f(u) = a0 + a1u1 + a2u2, u ∈ [0,1]
can	describe	any	of	the	following	motion:

Gilles	
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Blending	Functions	

The	quadratic	spline	specified	as:	
	
	
	
	
has	

p0 = f (0.5)  = a0 + u
1a1 + u

2a2  = a0 + 0.5
1a1 + 0.5

2    a2
p1 = f '(0.5) =           a1 + 2ua2  =              a1 + 2 *0.5a2
p2 = f ''(0.5) =                     2a2 =                             2a2  
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For	the	quadratic	spline	specified	as:	
	
	
	
	
its	
	

Blending	Functions	

 

p0 = f (0.5)  = a0 + u
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Desired		Properties	of	
Blending	Functions	
Affine	invariance:	

• affine	combination:	

• to	transform	a	curve,	we	can	transform	the	control	points	
and	then	regenerate	the	curve	
•  perspective	transformations	are	non-affine	�	only	rational	basis	can	
be	perspective	transformed	(see	NURBS)	

Marschner	

  
bi (u)

i=0

k

∑ = 1,  0 ≤ u ≤1

Desired		Properties	of	
Blending	Functions	
Convex	hull	property:	

• convex	combination	
of	control	points::	
� any	point	on	the	curve	is	a	convex	combination	of	its	control	points	
�  the	curve	is	a	weighted	average	of	the	control	points	

�  no	point	on	the	curve	lies	outside	the	convex	hull	
� makes	clipping,	culling,	picking,	etc.	simpler	
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bi (u)

i=0

k

∑ = 1,  bi (u) ≥ 0,  0 ≤ u ≤1

Interpolate	or	Approximate?	
A	spline	can:	

•  interpolate	some	or	all	control	points	
•  sounds	more	useful,	but	can	be	undesirable	because:	
•  less	continuity	
• more	unstable,	ringing	
•  lack	of	control	between	points	

•  approximate	the	control	points:	
control	points	not	on	the	spline	

•  control	points	influence	the	shape	of	spline,		
but	does	not	specify	it	exactly	

•  gain	local	control	and	better		
behavior	of	spline	

• when	needed,	control	points	can	be	computed	
such	that	the	spline	interpolates	some	of	them	

Durand	

Splines	

To	interpolate/approximate	n+1	control	points	
requires	a	spline	of	order	n:	
• 3	control	points:	quadratic	spline	
• 4	control	points:	cubic	spline	
	
For	cubic	with	four	coefficients,	we’d	need	four	
knowns	to	solve	the	polynomials	
•  for	example,	the	two	endpoints	and	their	first	
derivatives	
•  Recall:	control	points	are	the	geometric	constraints	or	
boundary	conditions	and	are	completely	user	specified	

Gilles,Merrell	



Cubic	Splines	
Examples	of	(Hermite)	cubic	splines:	

p0:	1st	end	point	
p1:	first	derivative	of	1st	end	point	
p2:	2nd	end	point	
p3:	first	derivative	of	2nd	end	point	

Foley,	van	Dam	92	

y(u)

x(u)

To	interpolate	a	large	number	of	control	points,	
we	can	join	together	a	number	of	splines	
	
Where	the	splines	meet	are	called	knots/joints	

	
	
	
	
	
Two	issues:	
1.  whether	the	combined	curve	has	local	control	
2.  smoothness	of	overall	combined	curve	

Each line segment is parameterized by its endpoint and
its centerpoint.

Each line segment is parameterized by its endpoints.

The endpoint of segment two is equated
to the "free" end of segment one.

The end of one segment is shared with the beginning endpoint of the next segment.

Moving a control point causes a change only in a localized region.

A change in any control point causes
ALL later line segments to be affected.

The endpoint of segment three is equated
 to the "free" end of segment two, etc.

Joining	Splines	

Gilles,Merrell,Shirley	

Each line segment is parameterized by its endpoint and
its centerpoint.

Each line segment is parameterized by its endpoints.

The endpoint of segment two is equated
to the "free" end of segment one.

The end of one segment is shared with the beginning endpoint of the next segment.

Moving a control point causes a change only in a localized region.

A change in any control point causes
ALL later line segments to be affected.

The endpoint of segment three is equated
 to the "free" end of segment two, etc.no
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Local	Control	

[Shirley]	

Joint	Smoothness	

Smoothness	of	overall	combined	curve,	useful	for:	
• computing	normals	across	joints	in	shading	

• parameter	interpolation	between	keyframes	in	animation	

Two	types	of	smoothness	measures:	

1. Parametric	continuity:	
• continuity	of	coordinate	functions	(x(u), y(u)) 
• useful	for	trajectories	

2. Geometric	continuity:	
•  continuity	of	the	curve/surface	itself	
•  useful	in	defining	shapes	(see	modeling	lectures)	



Measures	of	Joint	
Smoothness	

Parametric	continuity:	

• 0th	order,	C0�
curve	segments	meet	at	joint:	f2(0) = f1(1)

• 1st	order,	C1�

1st	derivatives,	velocities,	equal	at	joint:	f2’(0) = f1’(1)

• 2nd	order,	C2�

2nd	derivatives,	accelerations,	equal	at	joint	

y (t )

x(t )

S
C1C0

C2

Join point

Foley,	van	Dam	92	
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y(u)

x(u)

Marschner	

C0 C1 C2 

Cubic	Splines	
Reasons	we	prefer	to	work	with	cubic	splines	in	CG:	

•  cubics	allow	for	C2	continuity,	quadratics	offer	only	C1

•  lower	degree	polynomials	are	not	flexible	enough	
•  the	three	points	specifying	a	second-order	polynomial	
define	a	plane	in	which	the	polynomial	lies	

•  cubics	are	the	lowest	order	polynomials	that	can	be	non-planar	in	3D

•  the	greater	smoothness	offered	by	quartic*	and	other	
higher-order	polynomials	are	rarely	important	
•  higher	degree	polynomials	can	introduce	“wiggles”	(oscillations)	and	
are	more	expensive	to	compute	

•  used	mainly	in	designing	aerodynamic	curves/surfaces	

	
*don’t	confuse	quartic	(4th	order)	polynomial	with	quadric	(implicit	quadratic	surfaces	
formed	from	conic	sections)	

Cubic	Splines	
A	representation	of	cubic	spline	consists	of:	
•  four	control	points	(why	four?)	
•  these	are	completely	user	specified	
•  determine	a	set	of	blending	functions	

	
There	is	no	single	“best”	representation	of	cubic	spline:	
	
	
	
	
	
	
	
	
*	n/a	when	some	of	the	control	“points”	are	tangents,	not	points	

Cubic	 Interpolate?	 Local?	 Continuity	 Affine?	 Convex*?	 VD*?	

Hermite	 �	 �	 C1 �	 n/a	 n/a	

Cardinal	
(Catmull-Rom)	

	except	
endpoints	

�	 C1 �	 no	 no	

Bézier	 endpoints	 �	 C1 �	 �	 �	

natural	 �	 �	 C2 �	 n/a	 n/a	

B-Splines	 �	 �	 C2 �	 �	 �	

Hermite	Cubic	
Control	“points”:	position	and	1st	derivative	of	endpoints:	
	
	
	
	
	
	

	Constraint	matrix	
	
Basis	matrix:	

         f (u) = a0 + u
1a1 +     u2a2 +     u3a3

p0 = f (0) = a0 + 0
1a1 +     02a2 +     03a3

p1 = f '(0) =            a1 + 2 *0
1a2 + 3*0

2a3
p2 = f (1) = a0 +  11a1 +      12a2 +      13a3
p3 = f '(1) =            a1 + 2 *  11a2 + 3*1

2a3



f (u) = bi (u)pi
i=0

3

∑ = 1 u u2 u3⎡⎣ ⎤⎦

1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

p0
p1
p2
p3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f (u) = (2u3 − 3u2 +1)p0 + (u
3 − 2u2 + u)p1 + (−2u

3 + 3u2 )p2 + (u
3 − u2 )p3

b(u)

u

Hermite	Cubic	Blending	Functions	

Hodgins	

Hint:

p0 = f (0)
p1 = f '(0)
p2 = f (1)
p3 = f '(1)

Which	graph	is	
b0(u),	b1(u),	
b2(u),	and	b3(u)?	
	
How	can	you	tell?	

Hermite	Cubic	Blending	Functions	
For	the	Hermite	curve:	
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u
sum	of	weighted		
control	points	y(u)

p0	is	most	influential	at	u = 0

Near	u = 0, mainly	b0	and	b1	
determine	the	curve,	with	b2	
and	b3	contributing	

Foley,	van	Dam	90	

f(u)

Control	points	weighted	by	
the	blending	functions	
(only	y-component	shown):	

Hermite	Cubic		Examples	

y(t)

P
1

P
4

x(t)

Tangent vector
direction R

1
 at point

P
1
; magnitude varies

for each curve

Tangent vector
direction R

4
 at point

P
4
; magnitude fixed

for each curve
x(u)

y(u)

p0
p2

only	p1’s	magnitude 	only	p1’s	direction	
varies	for	each	curve 	varies	for	each	curve	

x(u)

y(u)

FvD	90	

Recall:	the	control	points	are	the	geometric	
constraints	or	boundary	conditions	and	are	
completely	user	specified	

Hermite	Cubic	Chain	

Can	achieve	C1	continuity	with:	
	
	
	
	
	
	
Given	n	control	points,	the	chain	contains	
(n−2)/2	cubic	segments	

The	chain	interpolates	the	control	points,	
provides	local	control	and	is	affine	invariant	

Shirley	

q0 = f2 (0) = f1(1) = p2
q1 = f2 '(0) = f1 '(1) = p3

� 

p2 = q0

� 

p0

� 

q2
f 1(u)

f2 '(0) = f1 '(1)

f 2 (u)



Problem	with	Hermite	Spline	
Mixing	points	and	tangents	as	control	
points	is	awkward	

To	get	C1,	designer	must	explicitly	specify	
derivative	at	each	endpoint	such	that	
consecutive	tangents	are	collinear		

This	gets	tedious	.	.	.	

Hodgins,Shirley	� 

p2 = q0

� 

p0

� 

q2f 1(u)

f2 '(0) = f1 '(1)

f 2 (u)

Cubic	Splines	
A	representation	of	cubic	spline	consists	of:	
•  four	control	points	(why	four?)	
•  these	are	completely	user	specified	
•  determine	a	set	of	blending	functions	

	
There	is	no	single	“best”	representation	of	cubic	spline:	
	
	
	
	
	
	
	
	
*	n/a	when	some	of	the	control	“points”	are	tangents,	not	points	

Cubic	 Interpolate?	 Local?	 Continuity	 Affine?	 Convex*?	 VD*?	

Hermite	 �	 �	 C1 �	 n/a	 n/a	

Cardinal	
(Catmull-Rom)	

	except	
endpoints	

�	 C1 �	 no	 no	

Bézier	 endpoints	 �	 C1 �	 �	 �	

natural	 �	 �	 C2 �	 n/a	 n/a	

B-Splines	 �	 �	 C2 �	 �	 �	

Cardinal	Cubic	Spline	
Given	n	control	points,	a	cardinal	cubic	spline	chain	has	n-3	
segments,	it	interpolates	all	points	except	the	endpoints	

•  each	segment	i	uses	as	control	points	
pi-1, pi, pi+1, pi+2,	so	each	segment		
shares	control	points	with	its	3		
subsequent	neighbors	�	local	control	

•  each	segment	i	spans	only	pi, pi+1	

•  the	derivative	at	pi	is	determined	by	the	vector	(pi+1 – pi-1)	
the	derivative	at	pi+1	is	determined	by	the	vector	(pi+2 – pi)

•  since	the	third	point	of	segment	i	is	the		
second	point	of	segment	i+1,	the	curve	is	C0	

•  further,	the	same	vector	determines	the	first	derivative	at	the	end	of	
segment	i	and	that	at	the	start	of	segment	i+1,	hence	Cardinal	cubic	
spline	(and	therefore	Catmull-Rom	spline)	has	built-in	C1	continuity	

Shirley	

p
4- p

2

p1

p2 p3

p4

p3- p1

p0

p1 p2

p3

p3 – p1

Canonical	form:	
	
	

	Constraint	matrix:	
Control	points:	

Cardinal	Cubic	Spline	

 

f (u) = a0 + u
1a1 + u

2a2 + u
3a3

f '(u) =         1a1 + 2ua2 + 3u
2a3

p1 = f (0) = a0
p2 = f (1) = a0 +1

1a1 +1
2a2 +1

3a3
f '(0) =                 1a1 + 2*0*a2 + 3*0

2 *a3
f '(1) =                 1a1 + 2*1*a2 + 3*1

2 *a3
(p2 − p0 ) = f '(0)⇒ p0 = p2 − f '(0) = a0 + 0a1 +1

2a2 +1
3a3

(p3 − p1) = f '(1)⇒ p3 = p1 + f '(1) = a0 +1a1 + 2a2 + 3a3

p
4- p

2

p1

p2 p3

p4

p3- p1

p0

p1 p2

p3

p3 – p1

C =

1 0 1 1
1 0 0 0
1 1 1 1
1 1 2 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



Cardinal	Cubic	Spline	

Cardinal	splines	have	additional	control	parameters	
(beyond	continuity):	tension	(t)	and	bias	(b),	allowing	
better	control	of	the	curve	between	control	points	

1 2

3
4

5

6 7

Shirley	

  fi
' (u)The	tension	parameter	(t)	controls	how	sharply	

the	curve	bends	at	the	control	point	pi	
by	controlling	the	magnitude	of	the	
tangent	(fi

’(u)):	
	
	
	
	
	
	
The	bias	parameter	(b)	puts	weight	on	
the	left	or	right	neighboring	control	point	

Cardinal	Cubic	Spline	

Akenine-Möller	&	Haines	02	

high	tension	
sharp	bend	

t = 1

default	
t = 0

low	tension	
t = –1

low	bias,	
undershoot	

b = -1

overshoot	
b = 1

  fi
' (u)

Cardinal	Cubic	Spline	with	Tension	

Akenine-Möller	&	Haines	02	
!

fi
' (u) = (1− t)(1− b)

2
(pi+1 − pi )+

(1− t)(1+ b)
2

(pi − pi−1)

For!b = 0, !fi
' (u) = 1− t

2
⎛
⎝⎜

⎞
⎠⎟ (pi+1 − pi−1)

Let!s = 1− t
2

⎛
⎝⎜

⎞
⎠⎟ ,!then!the!control!points!are:

p1 = f (0)! = a0
p2 = f (1)! = a0 + a1 + a2 + a3

f '(0) = !!!!!!!!!!!!!!!!1a1 + 2*0*a2 + 3*0
2 *a3

f '(1) = !!!!!!!!!!!!!!!!1a1 + 2*1*a2 + 3*1
2 *a3

f '(0) = s(p2 − p0 )⇒ p0 = p2 − s
−1f '(0) = a0 + (1− s

−1)a1 + a2 + a3
f '(1) = s(p3 − p1)⇒ p3 = p1 + s

−1f '(1) = a0 + s
−1a1 + 2s

−1a2 + 3s
−1a3

Cardinal	Cubic	Spline	
Cardinal	cubic	spline	with	bias	(b)	and	tension	(t)	=	0	
is	also	known	as	the	Catmull-Rom	spline	

Control	points	(s = ½):	
	
	
	
	
	
Constraint	and	Basis	matrices:	

C =

1 −1 1 1
1 0 0 0
1 1 1 1
1 2 4 6

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,  B = C−1 =
1
2

 

0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Shirley	

p
4- p

2

p1

p2 p3

p4

p3- p1

p0

p1 p2

p3

p3 – p1

 

p1 = f (0) = a0
p2 = f (1) = a0 + a1 + a2 + a3

p2 − p0 ⇒ p0 = p2 − 2f '(0) = a0 − a1 + a2 + a3
p3 − p1 ⇒ p3 = p1 + 2f '(1) = a0 + 2a1 + 4a2 + 6a3



Catmull-Rom	Blending	Functions	

Does	the	Catmull-Rom	
spline	have	the	convex	hull	
property?	

Problem	with	Catmull-Rom:	
does	not	interpolate	
endpoints	and	no	control	of	
derivatives	at	endpoints	

Shirley,Marschner	

p
4- p

2

p1

p2 p3

p4

p3- p1

p0

p1 p2

p3

b0(u) b3(u)

b2(u)b1(u)

p3 – p1


