EECS 487: Interactive
Computer Graphics

Lecture 33:
* Keyframe interpolation and splines
* Cubicsplines

Potential Problem with Interpolation

The curve may undershoot and cause inter-penetration
Solution: add key frames (= control points)!
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Interpolating Key Values

HEIES]

® key values <— interpolated values

The key values of each variable may
occur at different frames

The interpolation of key values of a
variable defines a curve

Hodgins

Motion Control Curve

Given the key frames, how would you mathematically
represent a control curve that interpolates (passes
through) the control points?
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Motion Control Curve

We don’t want motion with Which representation

- unnatural (painful) twists and bends of curves ha's these
- jerkiness characteristics?

Desired characteristics of the
motion control curve:
« user controlled with control points
» defines a smooth and continuous curve
- ability to evaluate derivatives
« stable: doesn't cross over itself
« local control of curve shape V|

+ change to one part of the curve ‘ ‘ ‘
doesn't effect the entire curve \ i /\ ‘
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Hodgins

Representation of Curves

Implicit: f(z,y) =0

+ supports multiple values for each z

+ easy to test if on, or to either side, of curve
- hard to generate points

Parametric: (z,y) = (f(u), g(u)) ) =attyiori=0
+ parameterization of a curve == how a change in

u moves you along a given curve in zyz space
+ supports multiple values for each z
+ fairly easy to generate points
+ can describe trajectories, the speed

at which we move on the curve

(x,y) = (rcos 0, rsin 0)

We want some kind of parametric
curve to control motion!

Schulze,Yu

Representation of Curves

Polyline: piecewise linear curves

« given a sequence of vertices (control points) p

« connect each pair of consecutive vertices
with a line segment

—a smooth curve will need a continuous
set of points on the plane (or in space) P

- hard to get precise, smooth results
- too much data, too hard to work with

Explicit: y = f(z)

+easy to generate points

- single-valued for each

- must be a function: big limitation,
e.g., vertical lines?

- rotations completely change representation ——————— =%

Yu

Parametric Curves

Define a mapping from parameter space
(e.g., u, usually € [0,1]), to points in 2D, 3D, etc.

Parameter space mapping:

« 1D: f(u) maps u to points on curve "

0 1 u mapping: Pl
fu=(z,y,2)

* 2D: [f(u), g(u)] maps u to points on surface

Chenney



Parametric Curves

In general, described by a vector-valued function,
i.e., nscalar functions, of 1D parameter space

y() y(u)

x(u)
pa)=| yw e e
- ‘\~I N\ V4 \) 1
aw l | \"’1 i | (7))
Tangent of the curve, e \ Ton | o)
tw) =P’ = [¢'@ ¥ 2], e
is the velocity of movement and 2md curve 1
||t(w)]|| is the speed of movement ~| {
T =t/ ||t SERNI
is the unit tangent of the curve uy

Foley, Van Dam, Schulze

Polynomial Functions

Linear (1t order):
f(w) =ay,+ a,u

/

— > U

Sf(w)
Quadratic (2" order):

fw) = ay,+ a,u+ a,u?

fw
Cubic (3" order):
fw) = ay + a,u+ a,u® + ayu’

u
Schulze

Parameter Mapping
z(u) y(u)l ]\:(u)
pa)=| yu) 1L
p(u
z(u) !‘=\~!’\*\**"7\<}‘~=
. . N7
The coordinate functions <L # S
can be any function: T ! o
. . Istcurve
« polynomials of arbitrary degree —
« trigonometric functions 2m curve 1

- exponentiations
« logarithms
« Fourier series, etc.

We'll only consider polynomials;

more complex functions are harder to deal with

Parametric Polynomial Curves

Linear:f(u) =a,+a;u,0 <u <1
Evaluated as:

z(1t) a,, +(11n
fe)= y() |=| 4, Ta,
z(1) a, +a,

Quadratic:

f(u) =a,+ a,u+ au

V=

Cubic:

FvD,Schulze,Merrell

f() =a, + aju + a,u” + azu

y

Schulze



Canonical Form Non-unique

Splines have the canonical form: Even restricted to polynomial functions, the same

parametric curve may have multiple descriptions
f(u)y=a,+uva +ua,+..+u" a

n—1°

n—1 T | | ‘ T
= z ai’ 2 B 2 B
i=0
= a, T 1 T 1
c [0’1] o i > 3 o i 3 3
p(u) = [uu]” p(w) = [ w’]"
Lagrange Interpolation Introducing . . . Splines
Problem: given n+1 control points, how do we define a A spline is a piecewise parametric polynomial function

parametric curve that interpolates all points? ) ) .
Many low degree (mostly cubic) splines can be pieced

An n-degree ponnomigI (Lagrange polynomial) can together to interpolate a given set of control points,
interpolate any n+1 points with guaranteed continuity

Problem: small-degree Lagrange polynomials are fine
but high degree ones are too wiggly

x(u)

Piecewise definition gives local control of curve

8-degree polynomial joined splines splines vs. polynomial

8-degree polynomial 10-degree polynomial Demo: http://www.math.ucla.edu/~baker/java/hoefer/TwoDemos.htm
Durand,Hodgins Durand




Splines

Originally used by draftsmen (draughtsmen £
in English, loftsmen in shipbuilding) to draw
life-size curves

Physically, a stiff piece of metal that can be bent into

desired shape for tracing, and held in place with “ducks”
* (the mathematical equivalent of these
metal strips is the natural-cubic spline)

Advantages of Splines

Specified by a few control points
- efficient for Ul
- efficient for storage

Gives a smooth parametric polynomial curve p(u)
- defined in Cartesian coordinates by z(x) and y(u)
« convenient for animation where u is time

- convenient for tessellation in modeling as u can be discretized
and the curve approximated with small linear segments

Durand

. 0.0)
Splines

Many uses in CG:

+ 2D illustration (e.g., Adobe Illustrators)

« font definition

+ 3D modeling

| control
colorramps points

+ animation: trajectories
- in general, interpolate keyframes R ONO TR NE N e )

T84

)

Durand,Marschner,Hanrahan

Linear Splines

The two coefficients of a first-order, linear polynomial
can be determined from its two end-points:

f(u)y=a, +ua, o= £(0)
p, =f(0)=a,+0a =a,
p,=f(l)=a,+1a, =a, +a,

in matrix form: p, = f(1)
Remember that

Po _ 1 0 a, —Ca the p/sand a/’s

p, 1 1 a, - P ’ are themselves

vectors

where C is called the constraint matrix

[Schulze, wikipedia]



Basis Matrix

a
Thena=C"p,| ' :[1 0} Po ,

a, =P,
a, =P, — Py

Let's call B = C-! the blending/basis matrix (for reasons
to be explained later), then:

f(#) = uva=uBp

Schulze

Blending Functions ‘| P
0.8 ﬁb()(”) b L(IJ’,) //_.»/
—_— ] - ‘-/_/ .
L) b,(u) oz ,/

The weights b, (1) = (1—u) B T AT I
and b,(1) = u are called the blending functions

1

f(u)=va=uBp = p, + plzzbi( )P,
i=0

expresses the polynomial as a weighted sum
(combination) of the control points: contribution
of each point as « changes (and we don’t have to
solve for the a’s (coefficient vectors)!)

Schulze

Two Views of Splines

f)=[ }B{ f)‘l’ ],WhereB:{ _11 (1)
t=[ 1 u] 1{ o D £ =([ ]B)_ 1; ]
ol 3] | e 1Y

f()=a,+ua, £()= P, +up,

Coefficients (a,'s) can be Each point on the curve is a
computed from control linear blending of the
points p;'s control points p;'s

Zhang

Non-linear Interpolations
(2 (2

O Q
S @) §) ©
T t T
1.0 0 1.0

0 5 5
Linear interpolation: object moves at constant speed
- in-between values at equal intervals along straight lines

O
— 0
O o O

0 5 1.0 0 5 1.0
Quadratic interpolation with constant speed and equal
spacing of in-between values
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e
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0 5 1.0 0
Cubic interpolation with acceleration Hodgins



Quadratic Splines

Quadratic (2" degree) spline
f(1) = a, + a,u + a,u’ are specified
by three coefficients and can be quadratic
solved by, for example, PO
« three points:

p,=f() =a,+ a + a,

p1
p2

The control points are the
geometric constraints or
boundary conditions and

p,=f(05) =a,+ a + a, .
are completely user specified

p,=f(l) =a,+ a + a,

« or by a point and its first and second derivatives:

p,=f(05) =a,+uva +ua, =a,+ a + a,
p, =f'(05) = a +2ua, = a + a,
p2:f”( ): a, = a,

Zhang

Blending Functions

The quadratic spline specified as:

p,=f(05) =a,+uva +ua, =a,+ a + a,

plzf'( ) = a t+iua, = a + a,

p,=£"0.5)= a, = a,
has

1 -5 .125

= andB=C'=| 0 1 -5

0O O 5

User-Specified Control Points

Given control points p,, p,, P,, the quadratic spline:
f() =a, +a,u' + a,u”,u € [0,1]
can describe any of the following motion:

Po

Gilles

Blending Functions

For the quadratic spline specified as:

p,=f(05) =a,+ua,+ua, =a,+05a,+ a,
p,=f'(5) = a +zua, = a, + a,
p, =f"0.5)= a, = a,
its
1 -5 .125
- andB=C"'=| 0 1 -5
0 O 5
2 1 -5 .125 Po
f()=Xb0p, = | o v =s||n
= 0o 0 5 P,



Desired Properties of
Blending Functions

Affine invariance: /
* affine combination:Zbl.(u) =1, 0<5u<l

i=0
* to transform a curve, we can transform the control points
and then regenerate the curve

Marschner

Interpolate or Approximate?

A spline can:

« interpolate some or all control points /
« sounds more useful, but can be undesirable because:

« less continuity
= more unstable, ringing
« lack of control between points

 approximate the control points: Py
control points not on the spline P,
« control points influence the shape of spline, °
but does not specify it exactly P‘/\/t =1
« gain local control and better t=0

behavior of spline
» when needed, control points can be computed
such that the spline interpolates some of them

A

Durand

Desired Properties of N
Blending Functions P

Py .

Convex hull property: e

P,
* convex combination ib(u)zl b(u)>0, 0<u <1
of control points:: < T T

= any point on the curve is a convex combination of its control points
= the curve is a weighted average of the control points
= no point on the curve lies outside the convex hull

= makes clipping, culling, picking, etc. simpler

= e PR

Splines

To interpolate/approximate n+1 control points
requires a spline of order n:

« 3 control points: quadratic spline

« 4 control points: cubic spline

For cubic with four coefficients, we'd need four

knowns to solve the polynomials

- for example, the two endpoints and their first
derivatives

» Recall: control points are the geometric constraints or
boundary conditions and are completely user specified

Gilles,Merrell



Cubic Splines Joining Splines
Examples of (Hermite) cubic splines: To interpolate a large number of control points,

(1) Po: Ist end point we can join together a number of splines
A p4: first derivative of 1st end point

p,: 2nd end point . ..

py: first derivative of 2nd end point Where the spllnes meet are called knots/joints

Each line segment is parameterized by its endpoints.

////

The end of one segment is shared with the beginning endpoint of the next segment.

Two issues:
(1) 1. whether the combined curve has local control
2. smoothness of overall combined curve

Foley, van Dam g2

Gilles,Merrell,Shirley

Each line segment is parameterized by its endpoints.

-
NSNS

Local Control Joint Smoothness

N\

E Smoothness of overall combined curve, useful for:
s
S » computing normals across joints in shading
v
S / / / * parameter interpolation between keyframes in animation
[
c Moving a control point causes a change only in a localized region TWO types Of SmOOthneSS measures:
./ Eacne segent s parmetras i ot an 1. Parametric continuity:
S e continuity of coordinate functions (x(i), y(u))
£ T e o engofsegmentons » useful for trajectories
S : .
= 2. Geometric continuity:
v
% * continuity of the curve/surface itself
< e "o of et . » useful in defining shapes (see modeling lectures)

Achange in any control point causes
ALL later line segments to be affected. [Shirley]



Measures of Joint {3}  woneont
Smoothness s

Parametric continuity:

° Oth Order, CO Foley, van Dam 92 " I(”)
curve segments meet at joint: £,(0) = f£,(1)

e Istorder, C!
st derivatives, velocities, equal at joint: £,"(0) = f,’(1)

 2nd order, C?
2nd derivatives, accelerations, equal at joint

alaG

Cubic Splines

A representation of cubic spline consists of:
* four control points (why four?)

* these are completely user specified

* determine a set of blending functions

Marschner

There is no single “best” representation of cubic spline:

v v L v n/a

Hermite C n/a

* nfa when some of the control “points” are tangents, not points

Cubic Splines

Reasons we prefer to work with cubic splines in CG:

« cubics allow for C? continuity, quadratics offer only C!
« lower degree polynomials are not flexible enough
+ the three points specifying a second-order polynomial
define a plane in which the polynomial lies

- cubics are the lowest order polynomials that can be non-planarin 3D

- the greater smoothness offered by quartic* and other
higher-order polynomials are rarely important

« higher degree polynomials can introduce “wiggles” (oscillations) and
are more expensive to compute

- used mainly in designing aerodynamic curves/surfaces

*don't confuse quartic (4t order) polynomial with quadric (implicit quadratic surfaces
formed from conic sections)

Hermite Cubic

Control “points”: position and 15t derivative of endpoints:

f(u)y=a,+ua + a, + a,
p,=f0) =a,+0 a, + a, + a,
p,=f'0)= a + a, + a,
p,=f() =a,+ la + a, + a,
p,=f'(l)= a + a, + a, Constraint matrix
Basis matrix:



Hermite Cubic Blending Functions

1 0 0 0 Po
3
~ 0 1 0 0 P,
()= D b.(u)p, =
2 [ | P,
2 1 =2 1 D,

£()= Qu’ = 3u” + 1)p, + (0’ = 2u” +u)p, + (2u” + 3u’)p, + (u* —u*)p,

b(u)

Which graph is W I o i Hint:
bo(u), by(u), : P, =1(0)
by(u), and bs(u)? . p, =1'(0)
- p, =f(1)
How can you tell? . p,=f'()

Hodgins

Hermite Cubic Examples

Recall: the control points are the geometric
constraints or boundary conditions and are
completely user specified

PR
L Ay

only p,’s magnitude
varies for each curve

()

(i)

only p,'s direction
varies for each curve

FvD 90

Hermite Cubic Blending Functions

For the Hermite curve: Control points weighted by

) the blending functions
T (only y-component shown):
)’4('/)
1 —
bo(1)Po,y by(1)P,,

(1) .
0 yS//) b, (u
1 ]
p, is most influential at # = 0 0
by(1)ps
Near # = 0, mainly b, and b,
determine the curve, with b, ,\/
and b, contributing
‘ u
"
sum of weighted
control points y(u) Foley, van Dam go

Hermite Cubic Chain

Can achieve C' continuity with: q, =£,(0)=f£,())=p,
q, :le( ):fl'( ):p3

£,'(O)=1£"() ———)

Ifl( : p2=q0""0. ) q,
£,(u) s
Po 2( )

Given n control points, the chain contains
(n—2)/2 cubic segments

The chain interpolates the control points,
provides local control and is affine invariant

Shirley



Problem with Hermite Spline Cubic Splines

Mixing points and tangents as control A representation of cubic spline consists of:

points is awkward * four control points (why four?)
* these are completely user specified

+ determine a set of blending functions

To get C!, designer must explicitly specify
derivative at each endpoint such that There is no single “best” representation of cubic spline:

consecutive tangents are collinear
?

This gets tedious. . .

Cardinal except v

f2 l( ) — fl u( ) I *—> (Catmull-Rom) endpoints
o, q,

Ifl( ) P, =9, "o'
Po f,( ) “es

C! v no no

* nfa when some of the control “points” are tangents, not points

Hodgins, Shirley

Cardinal Cubic Spline Cardinal Cubic Spline

Given n control points, a cardinal cubic spline chain has n-3

segments, it interpolates all points except the endpoints Canonical form:

» each segment i uses as control points |

Pii> Pi» Pist> Pivos 50 €ach segment fe)=a,+uwa, +ia,+ua, .

shares control points with its 3 f'(u)= a, +2ua, + 3u a,

subsequent neighbors = local control  Pp .- ' Constraint matrix:
+ each segment i spans only p;, p;,, ® Control points:
* the derivative at p, is determined by the vector (p;,; — p;;) p,=f(0)=a,

the derivative at p,,, is determined by the vector (p,,,— p,) p,=f()=a,+1'a, +1"a,+1 a, =

0 1 3

* since the third point of segment i is the f'(0)= a + a,+ a,

second point of segment i+1, the curve is C° ,

f'(l)= a + a,+ a,

further, the same vector determines the first derivative at the end of
segment i and that at the start of segment i+1, hence Cardinal cubic
spline (and therefore Catmull-Rom spline) has built-in C' continuity

(P, —p)=1')=p,=p,-f'(0)=2a,+0a,+1"a,+1 a,
P;-p)=f'(H)=p,=p,+f'(I)=a,+1a, +2a, + 3a,

Shirley



Cardinal Cubic Spline

Cardinal splines have additional control parameters
(beyond continuity): tension (¢) and bias (b), allowing
better control of the curve between control points

Shirley

Cardinal Cubic Spline with Tension

. 1-0)(1-b 1-)(1+b
fI( ):%(piﬂ_pi)-’_%(pi_pi—l)
Forb=0,f ()= ( )(p,ﬂ P.)

Lets= (1—;), then the control points are:

p, =£(0) =a,

p,=f(l) =a,+a, +a, +a,
f'(0)= a + a,+ a,
f'(hH= a + a,+ a,

f'( )=s(p2—p0):>p0=p2—s_lf'( )=ao+( —s_l)al+32+a3
f'()=s(p,—p,)=>p,=p,+s f'(I)=a,+s'a, +2s'a, + 35 a,

Akenine-Moller & Haines 02

Cardinal Cubic Spline

The tension parameter (¢) controls how sharply
the curve bends at the control point p, '
by controlling the magnitude of the
tangent (£, («)):

f(u)

high tension
sharp bend
t=1

default low tension
t=-1

low bias,

/\ /\ f_\ UnieLSIjIOIOt ovzrs:h?Ot
The bias parameter (b) puts weight on /\

the left or right neighboring control point

Akenine-Moller & Haines 02

Cardinal Cubic Spline

Cardinal cubic spline with bias (b) and tension (r) =0
is also known as the Catmull-Rom spline

Control points (s = %2): _Po
p,=£(0) =a, P,
p,=f(l) =a,+a, +a,+a, P

P,—P, =P, =p,-2f'(0)=a,—a,+a, +a, Qo
p;—Pp, =p;=p,+21'()=a,+2a, +4a, +6a,

Constraint and Basis matrices:

Shirley



Catmull-Rom Blending Functions

0

bl(u)

by(u)

0 by(u)

/uu)l

Does the Catmull-Rom
spline have the convex hull
property?

Problem with Catmull-Rom:
does not interpolate
endpoints and no control of
derivatives at endpoints

Shirley,Marschner



