EECS 487: Interactive Computer Graphics

Lecture 33:

- Keyframe interpolation and splines
- Cubic splines

Interpolating Key Values

Potential Problem with Interpolation

The curve may undershoot and cause inter-penetration Solution: add key frames (= control points)!

Motion Control Curve

Given the key frames, how would you mathematically represent a control curve that interpolates (passes through) the control points?

Motion Control Curve

Which representation We don't want motion with of curves has these • unnatural (painful) twists and bends characteristics? jerkiness Desired characteristics of the motion control curve: user controlled with control points defines a smooth and continuous curve · ability to evaluate derivatives stable: doesn't cross over itself local control of curve shape • change to one part of the curve doesn't effect the entire curve

Representation of Curves

Polyline: piecewise linear curves

- given a sequence of vertices (control points)
- connect each pair of consecutive vertices with a line segment
- a smooth curve will need a continuous
- set of points on the plane (or in space)
- hard to get precise, smooth results
- too much data, too hard to work with

Explicit: y = f(x)

- + easy to generate points
- single-valued for each x
- must be a function: big limitation,
- e.g., vertical lines?
- rotations completely change representation

Yu

Hodgins

Representation of Curves

Implicit: f(x, y) = 0

- + supports multiple values for each x
- + easy to test if on, or to either side, of curve
- hard to generate points

Parametric: (x, y) = (f(u), g(u))

- parameterization of a curve == how a change in *u* moves you along a given curve in *xyz* space
- + supports multiple values for each x
- + fairly easy to generate points
- + can describe trajectories, the speed at which we move on the curve

We want some kind of parametric curve to control motion!

n	
	r 0

 $f(x, y) = x^2 + y^2 - r^2 = 0$

$(x, y) = (r \cos \theta, r \sin \theta)$

Schulze,Yu

Parametric Curves

Define a mapping from parameter space (e.g., u, usually $\in [0,1]$), to points in 2D, 3D, etc.

Parameter space mapping:

• 2D: [f(u), g(u)] maps u to points on surface

Parametric Curves

In general, described by a vector-valued function, i.e., *n* scalar functions, of 1D parameter space

Parameter Mapping

FvD,Schulze,Merrell

Parametric Polynomial Curves

Linear: $\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u, 0 \le u \le 1$ Evaluated as:	Quadratic: $\mathbf{f}(\boldsymbol{u}) = \mathbf{a}_0 + \mathbf{a}_1 \boldsymbol{u} + \mathbf{a}_2 \boldsymbol{u}^2$
$\mathbf{f}(\boldsymbol{u}) = \begin{bmatrix} x(\boldsymbol{u}) \\ y(\boldsymbol{u}) \\ z(\boldsymbol{u}) \end{bmatrix} = \begin{bmatrix} a_{0_x} + a_{1_x}\boldsymbol{u} \\ a_{0_y} + a_{1_y}\boldsymbol{u} \\ a_{0_z} + a_{1_z}\boldsymbol{u} \end{bmatrix}$	y
y \mathbf{z} \mathbf{a}_0 x	Cubic: $\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3$
	Zi Schulze

Schulze

Canonical Form

Splines have the canonical form:

$$\mathbf{f}(\boldsymbol{u}) = \mathbf{a}_0 + \boldsymbol{u}^1 \mathbf{a}_1 + \boldsymbol{u}^2 \mathbf{a}_2 + \dots + \boldsymbol{u}^{n-1} \mathbf{a}_{n-1},$$

$$= \sum_{i=0}^{n-1} \boldsymbol{u}^i \mathbf{a}_i,$$

$$= \mathbf{u} \mathbf{a},$$

$$\mathbf{u} = \begin{bmatrix} 1 & \boldsymbol{u} & \boldsymbol{u}^2 & \dots & \boldsymbol{u}^k \end{bmatrix},$$

$$\boldsymbol{u} \in \begin{bmatrix} 0,1 \end{bmatrix}$$

Non-unique

Even restricted to polynomial functions, the same parametric curve may have multiple descriptions

Schulze

Lagrange Interpolation

Problem: given n+1 control points, how do we define a parametric curve that interpolates all points?

An *n*-degree polynomial (Lagrange polynomial) can interpolate any n+1 points

Problem: small-degree Lagrange polynomials are fine but high degree ones are too wiggly

Introducing . . . Splines

A spline is a piecewise parametric polynomial function

Many low degree (mostly cubic) splines can be pieced together to interpolate a given set of control points, with guaranteed continuity

Piecewise definition gives local control of curve

O'Brien

Splines

Originally used by draftsmen (draughtsmen in English, loftsmen in shipbuilding) to draw life-size curves

Physically, a stiff piece of metal that can be bent into desired shape for tracing, and held in place with "ducks"

• (the mathematical equivalent of these metal strips is the natural-cubic spline)

Advantages of Splines

Specified by a few control points

- efficient for UI
- efficient for storage

Gives a smooth parametric polynomial curve $\mathbf{p}(u)$

- defined in Cartesian coordinates by x(u) and y(u)
- convenient for animation where *u* is time
- convenient for tessellation in modeling as *u* can be discretized and the curve approximated with small linear segments

Splines

Many uses in CG:

- 2D illustration (e.g., Adobe Illustrators)
- font definition
- 3D modeling
- color ramps
- animation: trajectories
- in general, interpolate keyframes

Linear Splines

The two coefficients of a first-order, linear polynomial can be determined from its two end-points:

where **C** is called the constraint matrix

Basis Matrix

Then
$$\mathbf{a} = \mathbf{C}^{-1}\mathbf{p}_{\mathbf{i}}\begin{bmatrix} \mathbf{a}_{0} \\ \mathbf{a}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{1} \end{bmatrix},$$

 $\mathbf{a}_{0} = \mathbf{p}_{0}$
 $\mathbf{a}_{1} = \mathbf{p}_{1} - \mathbf{p}_{0}$

Let's call $\mathbf{B} = \mathbf{C}^{-1}$ the blending/basis matrix (for reasons to be explained later), then:

$$\mathbf{f}(\boldsymbol{u}) = \mathbf{u}\mathbf{a} = \mathbf{u}\mathbf{B}\mathbf{p}$$

Schulze

solve for the a's (coefficient vectors)!)

Two Views of Splines

$$\mathbf{f}(u) = \begin{bmatrix} 1 & u \end{bmatrix} \mathbf{B} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}, \text{ where } \mathbf{B} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
$$\mathbf{f}(u) = \begin{bmatrix} 1 & u \end{bmatrix} \begin{pmatrix} \mathbf{B} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix} \end{pmatrix} \qquad \mathbf{f}(u) = \begin{pmatrix} \begin{bmatrix} 1 & u \end{bmatrix} \mathbf{B} \begin{pmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$
$$\mathbf{f}(u) = \begin{bmatrix} 1 & u \end{bmatrix} \begin{bmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \end{bmatrix} \qquad \mathbf{f}(u) = \begin{bmatrix} (1-u) & u \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$
$$\mathbf{f}(u) = \mathbf{a}_0 + u\mathbf{a}_1 \qquad \mathbf{f}(u) = (1-u)\mathbf{p}_0 + u\mathbf{p}_1$$

 $\mathbf{f}(\mathbf{u}) = \mathbf{a}_0 + \mathbf{u}\mathbf{a}_1$

Coefficients (\mathbf{a}_i) can be computed from control points \mathbf{p}_i 's

Each point on the curve is a linear blending of the control points \mathbf{p}_i 's

Zhang

Quadratic Splines

Quadratic (2nd degree) spline $\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2$ are specified by three coefficients and can be solved by, for example,

p1 quadratic p2

The control points are the geometric constraints or boundary conditions and are completely user specified

• or by a point and its first and second derivatives:

$\mathbf{p}_0 = \mathbf{f}(0.5) = \mathbf{a}_0$	$+ \boldsymbol{u}^1 \boldsymbol{a}_1 + \boldsymbol{u}^2 \boldsymbol{a}_2 = \boldsymbol{a}_0 +$	$-0.5^{1}\mathbf{a}_{1}+0.5^{2}$ \mathbf{a}_{2}
$\mathbf{p}_1 = \mathbf{f}'(0.5) =$	$\mathbf{a}_1 + 2\boldsymbol{u}\mathbf{a}_2 =$	$a_1 + 2 * 0.5 a_2$
$\mathbf{p}_2 = \mathbf{f}''(0.5) =$	$2a_2 =$	2a ₂

Zhang

User-Specified Control Points

Given control points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , the quadratic spline: $\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u^1 + \mathbf{a}_2 u^2$, $u \in [0,1]$ can describe any of the following motion:

Blending Functions

The quadratic spline specified as:

$\mathbf{p}_0 = \mathbf{f}(0.5)$	$= \mathbf{a}_0 + \mathbf{u}$	$\mathbf{a}_1 + \mathbf{u}^2 \mathbf{a}_2$	$= \mathbf{a}_0 + 0.5^1$	$a_1 + 0.5^2$ a	h ₂
$\mathbf{p}_1 = \mathbf{f}'(0.5)$	=	$\mathbf{a}_1 + 2\mathbf{u}\mathbf{a}_2$	=	$a_1 + 2 * 0.5$	\mathbf{a}_2
$\mathbf{p}_2 = \mathbf{f}''(0.5)$	=	$2\mathbf{a}_2$	=	2	\mathbf{a}_2
has					

	1	.5	.25] [1	5	.125
C =	0	1	1	and $\mathbf{B} = \mathbf{C}^{-1} =$	0	1	5
	0	0	2		0	0	.5

Blending Functions

For the quadratic spline specified as:

$$\mathbf{p}_{0} = \mathbf{f}(0.5) = \mathbf{a}_{0} + u^{1}\mathbf{a}_{1} + u^{2}\mathbf{a}_{2} = \mathbf{a}_{0} + 0.5^{1}\mathbf{a}_{1} + 0.5^{2} = \mathbf{a}_{2}$$

$$\mathbf{p}_{1} = \mathbf{f}'(0.5) = \mathbf{a}_{1} + 2u\mathbf{a}_{2} = \mathbf{a}_{1} + 2*0.5\mathbf{a}_{2}$$

$$\mathbf{p}_{2} = \mathbf{f}''(0.5) = 2\mathbf{a}_{2} = 2\mathbf{a}_{2}$$
its
$$\mathbf{C} = \begin{bmatrix} 1 & .5 & .25 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } \mathbf{B} = \mathbf{C}^{-1} = \begin{bmatrix} 1 & -.5 & .125 \\ 0 & 1 & -.5 \\ 0 & 0 & .5 \end{bmatrix}$$

$$\mathbf{f}(u) = \sum_{i=0}^{2} b_{i}(u)\mathbf{p}_{i} = \begin{bmatrix} 1 & u & u^{2} \end{bmatrix} \begin{bmatrix} 1 & -.5 & .125 \\ 0 & 1 & -.5 \\ 0 & 0 & .5 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \end{bmatrix}$$

Desired Properties of Blending Functions

Affine invariance:

- affine combination: $\sum b_i(u) = 1, 0 \le u \le 1$
- to transform a curve, we can transform the control points and then regenerate the curve
- perspective transformations are non-affine ⇒ only rational basis can be perspective transformed (see NURBS)

Desired Properties of Blending Functions

Convex hull property:

• convex combination of control points::

 $\sum_{i=0}^{n} b_i(u) = 1, \ b_i(u) \ge 0, \ 0 \le u \le 1$

⇒ any point on the curve is a convex combination of its control points
 ⇒ the curve is a weighted average of the control points
 ⇒ no point on the curve lies outside the convex hull

⇒ makes clipping, culling, picking, etc. simpler

Interpolate or Approximate?

Splines

Marschner

To interpolate/approximate n+1 control points requires a spline of order n:

- 3 control points: quadratic spline
- 4 control points: cubic spline

For cubic with four coefficients, we'd need four knowns to solve the polynomials

- for example, the two endpoints and their first derivatives
- Recall: control points are the geometric constraints or boundary conditions and are completely user specified

Cubic Splines

Examples of (Hermite) cubic splines:

Joining Splines

To interpolate a large number of control points, we can join together a number of splines

Where the splines meet are called knots/joints

Two issues:

- 1. whether the combined curve has local control
- 2. smoothness of overall combined curve

Gilles, Merrell, Shirley

Joint Smoothness

Smoothness of overall combined curve, useful for:

- computing normals across joints in shading
- parameter interpolation between keyframes in animation

Two types of smoothness measures:

- 1. Parametric continuity:
 - continuity of coordinate functions (*x*(*u*), *y*(*u*))
 - useful for trajectories
- 2. Geometric continuity:
 - continuity of the curve/surface itself
 - useful in defining shapes (see modeling lectures)

Measures of Joint Smoothness

Parametric continuity:

- 0th order, C^0 Foley, van l curve segments meet at joint: $\mathbf{f}_2(0) = \mathbf{f}_1(1)$
- 1st order, C^1 1st derivatives, velocities, equal at joint: $\mathbf{f}_2'(0) = \mathbf{f}_1'(1)$
- 2^{nd} order, C^2
- 2nd derivatives, accelerations, equal at joint

Marschne

Cubic Splines

- A representation of cubic spline consists of:
- four control points (why four?)
- these are completely user specified
- determine a set of blending functions

There is no single "best" representation of cubic spline:

Cubic	Interpolate?	Local?	Continuity	Affine?	Convex*?	VD*?
Hermite	~	~	C^1	~	n/a	n/a
Cardinal (Catmull-Rom)	except endpoints	~	C^1	 	no	no
Bézier	endpoints	×	C^1	V	V	V
natural	V	X	C^2	V	n/a	n/a
B-Splines	X	V	C^2	V	V	V

* n/a when some of the control "points" are tangents, not points

Cubic Splines

Reasons we prefer to work with cubic splines in CG:

- cubics allow for C^2 continuity, quadratics offer only C^1
- lower degree polynomials are not flexible enough
- the three points specifying a second-order polynomial define a plane in which the polynomial lies
- cubics are the lowest order polynomials that can be non-planar in $3\mathrm{D}$
- the greater smoothness offered by quartic* and other higher-order polynomials are rarely important
- higher degree polynomials can introduce "wiggles" (oscillations) and are more expensive to compute
- used mainly in designing aerodynamic curves/surfaces

*don't confuse quartic (4th order) polynomial with quadric (implicit quadratic surfaces formed from conic sections)

Hermite Cubic

Control "points": position and 1st derivative of endpoints:

$$\mathbf{f}(u) = \mathbf{a}_0 + u^1 \mathbf{a}_1 + u^2 \mathbf{a}_2 + u^3 \mathbf{a}_3$$

$$\mathbf{p}_0 = \mathbf{f}(0) = \mathbf{a}_0 + 0^1 \mathbf{a}_1 + 0^2 \mathbf{a}_2 + 0^3 \mathbf{a}_3$$

$$\mathbf{p}_1 = \mathbf{f}'(0) = \mathbf{a}_1 + 2 * 0^1 \mathbf{a}_2 + 3 * 0^2 \mathbf{a}_3$$

$$\mathbf{p}_2 = \mathbf{f}(1) = \mathbf{a}_0 + 1^1 \mathbf{a}_1 + 1^2 \mathbf{a}_2 + 1^3 \mathbf{a}_3$$

$$\mathbf{p}_3 = \mathbf{f}'(1) = \mathbf{a}_1 + 2 * 1^1 \mathbf{a}_2 + 3 * 1^2 \mathbf{a}_3$$
 Constraint matrix

Basis matrix:

Hermite Cubic Blending Functions

$$\mathbf{f}(u) = \sum_{i=0}^{3} b_i(u) \mathbf{p}_i = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

b(u)

 $\mathbf{f}(u) = (2u^3 - 3u^2 + 1)\mathbf{p}_0 + (u^3 - 2u^2 + u)\mathbf{p}_1 + (-2u^3 + 3u^2)\mathbf{p}_2 + (u^3 - u^2)\mathbf{p}_3$

Hodgins

FvD 90

Hermite Cubic Blending Functions

Hermite Cubic Examples

Recall: the control points are the geometric constraints or boundary conditions and are completely user specified

only **p**₁'s magnitude varies for each curve

only **p**₁'s direction varies for each curve

Hermite Cubic Chain

Given *n* control points, the chain contains (n-2)/2 cubic segments

The chain interpolates the control points, provides local control and is affine invariant

Shirley

Problem with Hermite Spline

Mixing points and tangents as control points is awkward

To get C^1 , designer must explicitly specify derivative at each endpoint such that consecutive tangents are collinear

This gets tedious . . .

Hodgins, Shirley

Cubic Splines

A representation of cubic spline consists of:

- four control points (why four?)
- these are completely user specified
- determine a set of blending functions

There is no single "best" representation of cubic spline:

Cubic	Interpolate?	Local?	Continuity	Affine?	Convex*?	VD*?
Hermite	V	V	C^1	V	n/a	n/a
Cardinal (Catmull-Rom)	except endpoints	V	C^1	~	no	no
Bézier	endpoints	X	C^1	V	V	V
natural	V	X	C^2	~	n/a	n/a
B-Splines	X	~	C^2	V	V	V

 \star n/a when some of the control "points" are tangents, not points

Cardinal Cubic Spline

Given *n* control points, a cardinal cubic spline chain has *n*-3 segments, it interpolates all points except the endpoints

- each segment *i* uses as control points
- $\mathbf{p}_{i-1}, \mathbf{p}_i, \mathbf{p}_{i+1}, \mathbf{p}_{i+2}$, so each segment shares control points with its 3 subsequent neighbors \Rightarrow local control \mathbf{p}_0

- each segment i spans only $\mathbf{p}_i, \mathbf{p}_{i+1}$
- the derivative at p_i is determined by the vector (p_{i+1} p_{i-1}) the derivative at p_{i+1} is determined by the vector (p_{i+2} - p_i)
- since the third point of segment *i* is the second point of segment *i*+1, the curve is *C*⁰
- further, the same vector determines the first derivative at the end of segment *i* and that at the start of segment *i*+1, hence Cardinal cubic spline (and therefore Catmull-Rom spline) has built-in *C*¹ continuity

Cardinal Cubic Spline

 $(\mathbf{p}_3 - \mathbf{p}_1) = \mathbf{f}'(1) \Rightarrow \mathbf{p}_3 = \mathbf{p}_1 + \mathbf{f}'(1) = \mathbf{a}_0 + 1\mathbf{a}_1 + 2\mathbf{a}_2 + 3\mathbf{a}_3$

Cardinal Cubic Spline

Cardinal splines have additional control parameters (beyond continuity): tension (*t*) and bias (*b*), allowing better control of the curve between control points

Cardinal Cubic Spline

Akenine-Möller & Haines oz

Shirley

Shirley

Cardinal Cubic Spline

Cardinal cubic spline with bias (b) and tension (t) = 0 is also known as the Catmull-Rom spline

Control points $(s = \frac{1}{2})$: $p_1 = f(0) = a_0$ $p_2 = f(1) = a_0 + a_1 + a_2 + a_3$ $p_2 - p_0 \Rightarrow p_0 = p_2 - 2f'(0) = a_0 - a_1 + a_2 + a_3$ $p_3 - p_1 \Rightarrow p_3 = p_1 + 2f'(1) = a_0 + 2a_1 + 4a_2 + 6a_3$ Constraint and Basis matrices:

Catmull-Rom Blending Functions

Does the Catmull-Rom spline have the convex hull

Problem with Catmull-Rom: does not interpolate endpoints and no control of derivatives at endpoints

Shirley, Marschner