
EECS	487:	Interactive	
Computer	Graphics	
Lecture	30:	
•  Environment	mapping	
•  Radiance	map	
•  Accumulation	buffer	

Environment	Mapping	

The	key	to	depicting	a	shiny-looking		
material	is	to	provide	something	for	it		
to	reflect	
•  proper	reflection	requires	ray	tracing,	expensive	
•  can	be	simulated	with	a	pre-rendered	
environment,	stored	as	a	texture	
•  imagine	object	is	enclosed	in	an	infinitely	
large	sphere	or	cube	
•  rays	are	bounced	off	object	into		
environment	to	determine	color	

	
EM*surface	color	=	reflection	mapping	

Hanrahan	

Environment	Mapping	
Steps:	
•  load	environment	map	
•  for	each	reflective	pixel,	compute	its	normal	
•  compute	the	reflection	vector	from	the	normal	and	view	vectors	
•  use	the	reflection	vector	to	compute	an	index	into	the	
environment	map	in	the	reflection	direction	
•  note:	we’re	not	computing	ray	intersection	
between	the	reflection	vector	and	the	environment!	

•  use	the	texel	at	the	index	to	color	the	pixel	

Shortcomings:	
•  no	inter-object	reflection	
�	works	well	when	there’s	just	a	single	object	
•  no	self-reflection	

Jensen	et	al.	

Environment	Mapping	
Model:	
•  environment	is	infinitely	far	away	

•  all	reflections	as	seen	from	the	same,	far	
away	view	point:	
•  object	approximated	as	an	infinitely	small,	
perfectly	mirroring	ball	concentric	with	the	object	

•  reflected	color	computed	only	from		
the	direction	of	reflection	
•  not	from	the	position	on	surface	

•  determined	by	surface	normal	

•  no	ray-environment	intersection	computation	

Cube	Map	
Most	popular	and	fastest:	easy	
to	produce	with	rendering	system	
or	by	photography	from	center	of	
object,	once	for	each	side	of	cube	

Simple	texture-coordinates	
calculation	

Texture	creation	from	scene:	
•  view	independent	
•  uniform	sampling/resolution	

Supports	bilinear	filtering	and	
mipmapping	

TP3	

t

s

t
s

t

s

y Computing	Reflection	
Steps:	
1. compute	reflection	vector,	r
•  e	from	eye	to	vertex	
•  n	normal	in	eye	coordinates	
•  r = e – 2n(n•e)

2. reflection	is	a	function	of	one	direction:	largest	absolute	
value	of	r’s	components	determines	the	cube	face	to	reflect	
•  example:	r = (5, −1, 2)	gives	+x	as	the	reflected	face	

3. divide	r	by	the	value	of	the	“reflection”	coordinate	(5)	and	
map	to	[0,1]�	
(s, t) = ((y + x)/2x, (z + x)/2x)�

= ((−1/5 + 1)/2, (2/5 + 1)/2)�
= (0.4, 0.7)

+z +x -x -z

+y

-y

x

y

z

n
e

r

Cube	Map:	Disadvantages	
Angular	size	of	texel	varies	across	a	cube	face	
	
Usually	doesn’t	interpolate	across	cube	faces	
�	cube	edges	are	reflected	on	object	

	
Tools	such	as	AMD’s	CubeMapGen	can	fix	these	problems	

RTR3	

θθ

Methods	to	Create	EM	
• Cube	map	

•  Latitude/longitude	projections	map	
•  created	by	painting	
•  oversampling	of	poles	compared	to	the	equator	

•  Spherical	map	
•  gazing	ball	
•  fisheye	lens	

• Parabolic	map	

Gazing	Ball	(Light	Probe)	
Created	by	photographing	a	
reflective	sphere	

Maps	all	directions	to	a	circle	

Reflection	indexed	by	normal	

Texture	creation	from	scene:	
•  resolution	function	of	orientation	
•  view	dependent:	must	regenerate	EM	
when	camera	moves	or	will	see	the	
same	thing	

Hanrahan09	

Sphere	Mapping	
Use	a	texture	map	of	a	sphere	viewed	
from	infinity	use	r	to	look	up	texel	
•  the	eye	vectors	are	parallel	
•  r	determined	only	by	surface	normal	

Want:	compute	texture	coordinates	(s, t)	from	r	
•  texture	is	not	really	pasted	to	the	inside	of	the	
environment	sphere,	but	projected	(next	slide)	
•  object	can	be	approximated	as	an	infinitely	small,	
perfectly	mirroring	ball	concentric	with	the	object	
• map	the	normals	of	an	object	to	the	corresponding	
normals	of	a	sphere	

n
e r = (x, y, z)

environment	
map	on	a	sphere	

view	point	

object	

h

Zhang08	

Computing	(s, t)	from	r
Observation:	n	can	be	expressed	in	terms	of	r	and	e:

r = e − 2n(n i e)
r − e =αn

-e

s

RTR3	
Zhang08	

αn = r − e =

x
y
z
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

0
0
−1
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

! where! αn = p = x 2 + y2 + (z +1)2

αn
αn

=

x / p
y / p

(z +1) / p
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!since! r = 1,!p = 2(z +1)

texture	

Computing	(s, t)	from	r	

(1, 1)

(–1, –1)

h =

hx

hy

1− hx
2 − hy

2

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 hx = x p hy = y p

 s = x
2p

+ 1
2

 t = y
2p

+ 1
2

!

αn
αn

=

x / p
y / p

(z +1) / p
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where!p = 2(z +1)

Zhang08	

!

scaled!to!texture!space![0,1]:

s = 1
2
hx +

1
2
!!!!!!!t = 1

2
hy +

1
2

unit	sphere	in	eye	space,	
gazing	down	–z:	

-e

s

RTR3	h

hx

hy

texture	

Parabolic	Map	

RTR3	

Uses	z-component	of	reflected	
vector	to	determine	texel	

Texture	creation	from	scene:	
• view	independent	
• uniform	sampling	
• maps	hard	to	create	

Heidrich&Seidel	

OpenGL	2.1
Sphere	map: 		
// insert where the texture is created
glTexGeni(GL_S,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);
glTexGeni(GL_T,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

Cube	map:		
•  load	six	images,	one	for	each	face	with:	
glTexImage2D(target)	

•  texture	coordinates	generated	using	
glTexGen*(…,GL_TEXTURE_GEN_MODE,GL_REFLECTION_MAP);
glEnable(GL_TEXTURE_CUBE_MAP);

Functions	deprecated	

Cube	Mapping	with	GLSL	
==== OpenGL app: initialize texture sampler to texture unit 0 ====
GLuint cubeid = glGetUniformLocation(myprog, “mycube”);
glUniform1i(cubeid,0); // assign texure unit 0 to cubeid

==================== // vertex shader: compute r =================
varying vec3 r;

void main() {
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
 vec3 n = normalize(gl_NormalMatrix * gl_Normal);
 vec4 e = gl_ModelViewMatrix * gl_Vertex;

 r = reflect(-e,n);
}
==================== // fragment shader ===========================
varying vec3 r;
uniform samplerCube mycube;

void main() {
 gl_FragColor = textureCube(mycube, r);
}

Angel0
9	

Limitation	of	EM	

Environment	map	assumes	object	infinitesimally	
small	and	reflections	infinitely	far	away	

	
EM	errors	hard	to	notice	on	non-flat	objects,	
but	doesn’t	work	well	for	flat/planar	surfaces,	
•  reflected	rays	usually	do	not	vary	bymore	than	a	few	
degrees	�	a	small	part	of	the	EM	is	applied	to	a	large	
area	
• worse	with	orthographic	projection:		
all	orthographic	reflected	vectors	are	parallel	

Can	simulate	reflection	from	
still	water	
	
	
	
	
	
But	not	wavy	water	
(via	bump	map)	

1.  reflection	doesn’t	meet	boat	
2.  reflection	behind	the	boat	
3.  environment	map	magnified	

Limitations	of	EM	

env.	
map	

Hart08	

Boat	reflected	in	wavy	water	rendered	
using	an	environment	map	
	
Can	you	find	three	things	wrong	with	
this	picture?	

Diffuse	Reflectance	
With	EM,	each	texel	is	a	directional	light	source:	
•  for	perfectly	specular	surfaces,	only	lighting	in	the	reflected	
direction	contributes	to	lighting	
•  in	the	diffuse	case,	lighting	is	integrated	over	the	hemisphere	
above	a	point	
•  cost	of	computing	diffuse	color	of	a	point	(c)	is	on	the	order	of	
the	number	of	texels	in	the	EM!	

	
•  k	directional	lights	(texels)	
•  l(j): direction	of	light	j	
•  s(j):	intensity	of	light	j
•  n:	surface	normal	
•  m:	material	reflectance	

Schulze	

c = m s(j) max((l(j)in),0)
j=1...k
∑

Irradiance	Map	
Precomputation	of	diffuse	reflection	

Observations:	
•  irradiance	at	various	points	differs	only	on	
incoming	directions	and	the	surface	normal	
•  all	points	with	the	same	normal	
reflect	the	same	irradiance	
•  (method	limited	to	lighting	contribution	
from	a	distant	environment!)	

	

Idea:	
•  precompute	sum	for	all	possible	normals	
•  store	results	in	a	second	environment	map	
called	the	diffuse	(irradiance	environment)	map	
•  radiance	map	indexed	by	surface	normal	

r

n

Illumination	map	
	
	
	
	
	
	
	
	
	
Irradiance	map	

Schulze,Ramamoorthi	

More	generally,	given	the	BRDF	of	the	
surface,	the	Reflectance	Equation	is:	
	
	
	
	
	
	
	
	
need	to	(pre-)compute	irradiance*BRDF	

Glossy	Surfaces	 l
v

ρ
ωi

ωo

Ramamoorthi,Kautz	

L(ωo) = L(
−π 2

π 2

∫ ωi)ρ(ωi ,ωo)dωi

Reflected Light (ρ)

Interactive	Visual	FX	
Anti-aliasing:	
• accumulation	buffer	
	
Camera	effects:	
• motion	blur	
•  depth	of	field	
•  accumulation	buffer	

Shadows:	
• projected	(soft)	shadows	
•  stencil	buffer	
• depth	buffer	as	shadow	map	

Other	global	illumination	
effects:	
•  reflection	
•  refraction	
•  color	bleed	(one	bounce)	
•  caustics	
	

Environmental	effects:	
•  participating	medium	and	
volume	rendering	
•  particle	systems	
•  fluid	dynamics	

Limitations	of	GL_MULTISAMPLE

No	control	of:	
•  number	of	samples,	can’t	have	adaptive	quality/performance	
trade-off	
•  sample	locations:	can’t	do	stochastic	sampling	or	adaptive	
sampling	or	use	different	sampling	patterns	(perhaps	
different	per	pixel)	
•  averaging	function	(filter	shapes	and	extents)	
	
We	can	use	the	accumulation	buffer	to	address	most	
of	the	shortcomings	of	GL_MULTISAMPLE	(except	
for	per-pixel	sampling	pattern,	and	at	the	cost	of	
slower	performance)	

The	Accumulation	Buffer	

Same	size	as	the	color	buffer,	used	to	hold	
(accumulate)	results	from	partial	computation	
	
Deprecated	since	OpenGL	3.1

Instead,	use	framebuffer	object	with	floating-point	
pixel	format	
• same	concept	as	accumulation	buffer

Multisampling	with	the	
Accumulation	Buffer	

Akeley07	

glutInitDisplayMode(… | GLUT_ACCUM);
// set up desired rendering modes

glAccum(GL_LOAD, 0.0); // or glClear(GL_ACCUM_BUFFER_BIT);

for (int i=0; i<n; ++i) {

// specify sampling location for the i-th pass
// by offsetting the frustrum
// (google accpersp.c for the redbook source samples)
render(scene); // to color buffer

// accumulate the color buffer (multiplied by
// a weight) to the accumulation buffer
glAccum(GL_ACCUM, sampleweight[i]);

}

// copy the accumulation buffer to color buffer
glAccum(GL_RETURN, 1.0);

Hart,RTR3	

Sample	the	scene	k	times,	place	the	moving	object(s)	
at	a	new	location	each	time	

Each	sample	contributes	1/k-th	of	the	final	color:	
glAccum(GL_ACCUM, 1/k)

Motion	Blur	
Sample	the	scene	k	times,	each	time	with	a	slightly	different	eye	
position,	but	such	that	the	focal	plane	bounded	by	the	frustrum	
is	the	same	in	each	sample	

Each	sample	contributes	1/k-th	of	the	final	color:	
glAccum(GL_ACCUM, 1/k)	

	

	

	

	

	

	

	

	focal	plane	
Hart	

Depth	of	Field	

Shadows	for	Interactive	Rendering	
Let’s	start	with	hard	shadows	
	
Phong	illumination	model	with	hard	shadows:	
	
	
(k:	light	number,	not	exponentiation!)	
•  includes	visibility	term	(v(k) = 1),	
if	a	light	can	“see”	the	point	
•  if	point	is	in	shadow,	only	ambient	term	applies	
	
How	to	determine	if	point	is	in	shadow?	

ct = cg + me + sspot
(k)

k=1

n

∑ (ca
(k) + v(k) f (d (k))(cd

(k) + cs
(k)))

Merrell	

Computing	Shadows	

Planar	receiver	
•  projected	shadows	

Non-planar	receiver	
•  shadow	maps	
•  projective	texture	
•  shadow	volumes	

All	performed	in	real-time/interactive	(sort	of)	

Projected	Shadows	
Ways	to	think	about	shadows:	
• as	a	dark	volume	of	space	
• as	places	not	seen	from	a	light	source	looking	at	the	scene	
• as	a	separate	object	
•  project	object	to	the	receiver	and	draw	it	a	second	time	

Akenine-Möller02,Durand	

Works	only	with	point	lights 	For	projection	onto	y = 0:	
and	planar	receivers	
•  project	occluders	onto	receivers	
•  using	shadow	projection	matrix	

	
What’s	the	projection	matrix	
for	planar	receiver	in	general,	
other	than	for	y = 0?	

Projected	Shadows	

x

y

l

v

p lx vx

p =Mv

px
py
pz
pw

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

ly −lx 0 0

0 0 0 0
0 −lz ly 0

0 −1 0 ly

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

vx
vy
vz
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ly
lx − px

=
vy

vx − px
lyvx − ly px = lxvy − pxvy
lyvx − lxvy = px (ly − vy)

px =
lyvx − lxvy
ly − vy

Point	p	is	at	the	intersection	of	ray	and	plane	if	(mixing	notation):
nip + D = 0, 	D = −nia
ni L + t(v −L)()+ D = 0

t = − D + niL
ni(v −L)

p = L − D + niL
ni(v −L)

⎛
⎝⎜

⎞
⎠⎟
(v −L)

Shadow	projection	matrix	(M)	can	now	be	computed:
p =Mv

M =

niL + D − Lxnx −Lxny −Lxnz −LxD

−Lynx niL + D − Lyny −Lynz −LyD

−Lznx −Lzny niL + D − Lznz −LzD

−nx −ny −nz niL

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Projected	Shadows	

L

v
p

plane:	n•p + D = 0, D = −n•a

ray:	L + t(v − L)

Yu	 Hart	

Sample	the	scene	k	times,	with	object	projected	
onto	the	receiver,	each	time	with	a	slightly	different	
light	position	

Each	sample	contributes	1/k-th	
of	the	final	shadow	color:	
glAccum(GL_ACCUM, 1/k)

Soft	Shadows	

