
EECS	487:	Interactive	
Computer	Graphics	
Lecture	28:		
•  Ray	Tracing	Implementation	

Ray	Tracing	
Basic	tasks:	
1.  Specify	the	viewing	geometry:	

eye	coordinate	frame,	image	plane,	
and	view	frustum	

2.  For	each	pixel	in	the	image	plane:	
a. build	a	ray	in	eye	coordinates	
b. transform	to	world	coordinates	(why?)	
c. figure	out	what	the	ray	hits	
d. compute	shading,	e.g.,	by	using	Phong	illumination	model	

The	core	of	any	ray	tracing	systems,		
as	well	as	its	bottleneck	(75%	of	time	
spent	here)	

All	ray	intersection	problems	boil	down	to	
the	mathematical	process	of	finding	roots	

Replaces	
viewing	and	
projection	
transforms	

Image	Plane	and	View	Frustum	

Shirley,Funkhouser	

Let	the	screen/image	
plane	be	at	the	near	
plane	(w = n)	

Given	s	in	image	space	(i,	j)	and	r, l, t, b, n	in	eye	space	
	(u,v,w),	compute	s	in	eye	space:	seye	

Screen	Pixels	in	Eye	Coordinates	

u

v
s = pixel	(i, j)

pixel	(0, 0)

pixel	(HRES, VRES)

Let	ll = (l, b, n)

(r, t, n)

	

su = l +
(r − l)
HRES

i + 0.5()

sv = b +
(t − b)
VRES

j + 0.5()
Assumming	symmetric	frustum:

r = −l, 	t = −b

seye =

su
sv
sw
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

l + 2r i + 0.5
HRES

b + 2t j + 0.5
VRES
n
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Zwicker	

i

j

sworld =Meye→worldseye

=

sworld = e + l + 2r i + 0.5
HRES

⎛
⎝⎜

⎞
⎠⎟ u + b + 2t j + 0.5

VRES
⎛
⎝⎜

⎞
⎠⎟ v + nw

Since ll = e + lu + bv + nw

sworld = ll + 2r i + 0.5
HRES

⎛
⎝⎜

⎞
⎠⎟ u + 2t j + 0.5

VRES
⎛
⎝⎜

⎞
⎠⎟ v

Screen	Pixels	in	World	Coordinates	

1 0 0 ex
0 1 0 ey
0 0 1 ez
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ux vx wx 0
uy vy wy 0

uz vz wz 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

seye =

ux vx wx ex
uy vy wy ey
uz vz wz ez
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

l + 2r i + 0.5
HRES

b + 2t j + 0.5
VRES
n
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

x

y

z

u

v

w

screen

s

ll

Note:	no	perspective	projection	matrix,	
ray	generation	took	care	of	that!	

Merrell	

v

u −w

Building	a	Ray	in	Eye	Coordinates	

Anchor	point:	
e = (xe, ye, ze, 1)

Ray:	r = (e, d)

p = r(t) = e + t d,
t > 0

Direction:
d = s − e = (xd, yd, zd, 0)
||d|| = 1	preferred,	
but	is	not	always	so	

s:	screen	
intersection	

Hart	

x

y

z world	coordinates	

Assuming	symmetric	frustum:	
•  focal	length:	d = t /tan(ϕ),	ϕ = fovy/2
•  aspect	ratio:	

a = HRES/VRES = (r − l)/(t − b)�
= 2r/2t � r = at �

(r	and t	are	unknown)	

Then:	
•  sworld = ll + (2 at (i + 0.5)/HRES) u �

+ (2 t (j + 0.5)/VRES) v
•  ll = e − dw − ru − tv = e − dw − atu − tv

•  dividing	by	t:

Expressed	in	Aspect	Ratio	and	FoVy	

llDIVt = eDIVt - 1/tan(phi)w – au – v
for (j = 0; j < VRES; j++) {
 for (i = 0; i < HRES; i++) {
 sDIVt = llDIVt + 2au (double)(i+0.5)/HRES

 + 2v (double)(j+0.5)/VRES;
 color = raytrace(ray(e, sDIVt – eDIVt));
 plot(i,j,color);

 }
}

Hart	

e

-ru
-tv

ll

2ϕ

s

HRES	

VRES	

(r, t, n)−au
−v

−dw

Ray-Object	Intersection

raytrace(r = (e, d))returns	the	
intensity	of	light	(e.g.,	an	RGB	triple)	
arriving	at	the	ray	anchor	at	e	in	the	
opposite	direction	(−d)	

e
d

ray r

raytrace(r)

color raytrace(ray r, int depth) {
 color c = background;
 if ((hit = intersect(r)) != NULL) {
 hit->depth = depth – 1;

// shading details simplified,
// see earlier version

 if (hit->depth > 0) {
c = raytrace(r, hit->depth);

}
 }
 return c;
}

Hart08	

Ray-Object	Intersection	
Ray:	r(t) = e + t d	
For	each	ray	we	must	find	the	nearest	
intersection	point	with	all	objects	in	the	scene	

We	can	define	the	scene	using:	
• surface	models:	plane,	triangle,	polygon	
• solid	models:	sphere,	cylinder	

Recall:	implicit	surfaces:	for	point	p = (x, y, z)	in	
surface,	f (p) = 0	

Then	ray-surface	intersection	is	when	f (r(t)) = 0
Solve	for	t, r(t)	is	the	intersection	point	

Zwicker06	

Plane	implicit	equation:	f (p) = (p − q)•n = 0,	
where	n	is	the	plane	normal	and	q	a	point	in	the	plane	
	
For	p = r(t),	the	ray-plane	intersection	is	at:	

((e + td) − q)•n = 0,	t = (q − e)•n/d•n
	
Equivalently,	for	p = (xp, yp, zp),	the	implicit	plane	equation	is:	

Axp + Byp + Czp + D = 0	
• the	unit	normal	of	the	plane:	n = [A B C]T, A2 + B2 + C2 = 1	
• D	is	the	distance	from	the	coordinate	system	origin	
(sign	of	D	determines	which	side	of	the	plane	the	origin	is	at)	

	
Ray-plane	intersection	is	at	t	such	that:

A(xe + txd) + B(ye + t yd) + C(ze + t zd) + D = 0

Ray-Plane	Intersection	

Ray-Triangle	Intersection	
Find	ray-plane	intersection	for	plane	defined	
by	the	triangle	
	
If	intersection	exists:	
•  compute	barycentric	coordinates	of	
the	intersection	point	

•  if	barycentric	coordinates	are	all	positive	
and	sum	to	1,	point	is	a	convex	combination	
of	the	vertices	of	the	triangle	and	is	inside	triangle	

•  otherwise	outside	
•  (Möller&Trumbore	algorithm	does	it	in	

1	div,	27	muls,	17	adds)	

Ray-Box	Intersections	
Could	intersect	with	6	faces	individually:	O(n2)
Better:	box	is	the	intersection	of	3	slabs	O(n)
n:	number	of	comparisons	
2D	example	(similarly	for	3D):	
xmin= xp+ txmin xd
txmin

 = (xmin − xp)/xd

ymin= yp + tymin
 yd

tymin
 = (ymin − yp)/yd

tmin = max(txmin
, tymin

)
tmax = min(txmax

, tymax
)

if	tmin > tmax,	box	is	missed	
if	tmax < 0,	box	is	behind	eye	
else	r(tmin)	is	intersection	point	

(xp, yp)

(xd, yd)

ymin	

ymax	

Ray-Sphere	Intersections	
A	sphere	is	defined	by	the	sphere	center	
c	=	(xc, yc, zc),	and	radius	r

Sphere	implicit	function:	||p − c|| = r
(xp − xc)2 + (yp − yc)2 + (zp − zc)2 − r2 = 0	

Ray-sphere	intersection:	
((xe + txd) − xc)2 + ((ye + tyd) − yc)2 + ((ze + tzd) − zc)2 − r2 = 0

Multiplying	out	and	simplifying:	
0 = (xd

2 + yd
2 + zd

2) t2 + 2(xd(xe − xc) + yd(ye − yc) + zd(ze − zc)) t �
+ (xe − xc)2 + (ye − yc)2 + (ze − zc)2 − r2

0 = At2 + Bt + C

If	d	is	normalized,	A = xd
2 + yd

2 + zd
2 = 1

The	solutions	for	t	can	be	found	
using	the	quadratic	equation:	 t = −B ± B2 − 4C

2

cr

e
d

p

Ray-Sphere	Intersections	
B2 − 4C	is	the	discriminant	

Three	possibilities:	
1.  B2 − 4C < 0

•  no	real	roots,	sphere	was	missed,	
no	intersection	�	always	check	the	
discriminant	first	

2.  B2 − 4C = 0
•  one	real	root,	ray	“grazes”	the	
sphere,	t0 = t1 = −B/2

3.  B2 − 4C > 0
•  two	real	roots	

a.  t0 < 0, t1 > 0�
negative	values	of	t	indicate	
that	the	ray	started	in	the	
sphere	�	only	positive	roots	
are	valid

b.  0 < t0 < t1 	
the	smaller	root	is	closer	to	the	
ray’s	starting	point,	e �	save	
time	by	computing	the	small	
root	first	

case	1 case	2 case	3a case	3b

t1

t0

t1t0

Merrell08	

t = −B ± B2 − 4C
2

Computation	time	per	ray-sphere	test:	
•  17	additions	/	subtractions	
•  17	multiplies	
•  1	square	root	

Computing	normal:	the	normal	n	
at	an	intersection	point	p	on	a	
sphere	is	the	same	as	the	
coordinates	of	p	in	the	sphere’s	
frame	of	reference:	

Ray-Sphere	Intersections	

n p

c

r

n = p − c
p − c

=
p − c
r

=
xp − xc

r
yp − yc
r

zp − zc
r

⎛

⎝
⎜

⎞

⎠
⎟

T

Merrell08	

A	sphere	is	defined	by	the	sphere	center	
c	=	(xc, yc, zc),	and	radius:	r

Sphere	implicit	function:	||p − c|| = r
(p − c)•(p − c) − r2 = 0	

Ray-sphere	intersection:	
((e + td) − c)•((e + td) − c) − r2 = 0

Multiplying	out	and	simplifying:	
0 = (d•d) t2 + 2((e − c)•d) t + (e − c)•(e − c) − r 2

0 = t 2 + Bt + C

if	d	is	normalized,	||d|| = 1

Acceptance/rejection	tests:	
•  (e − c)•d > 0?
•  (e − c)•(e − c) − r2 < 0?	

Ray-Sphere	Intersections	

cr

c

e
d

e
d

p

Let l = c − e, l2 = l•l
if (l2 < r 2) e	is	inside	of	sphere	

tca = l • d //	d	normalized,	projection	of	l	on	d
if (tca < 0	and	e	is	outside	of	sphere)�

ray	pointing	away	from	sphere,	no	intersection

d2 = l2 − tca
2

if (d2 > r 2) ray	misses	sphere	

thc = √(r 2 − d2)
if	(e is outside sphere)�

intersection	is	at	t0 = tca − thc
else	

intersection	is	at t1 = tca + thc
//	to	compute	p	with	unnormalized	d,		
//	normalize	d	first:	use	t/||d||

Worst	case	computation	reduced	by	4	mults	and	1	add	

Ray-Sphere	Intersections−Geometric	

d

ce

tca
thc

l
p0

p1
d

Funkhouser09	

r

Ellipsoid	Intersection	
We	have	an	optimized	ray-sphere	test	
•  but	we	want	to	ray	trace	an	ellipsoid…	

Let	M	be	a	4×4	transformation	matrix	
that	distorts	a	sphere	(f())	into	an	ellipsoid	
For	p	on	ellipsoid,	f (M−1p) = 0
f (M−1r(t))= f (M−1(e + t d))

= f (M−1e + t M−1d)	

Intersection	point	must	be	in	world	
coordinates	
•  t	is	the	same	in	both	cases	

p = e + t d
Don’t	forget	to	transform	the	normal:	

nellipsoid = (M−1)Tnsphere

f (M−1p) = 0

e

d

M−1e

M−1d

p

M−1p

M−1
M

Hart	

e

d

e d

e d d
e

Intersection	
In	general,	for	an	object	that	is	to	be	
transformed	by	matrix	M,	ray	
intersection	may	be	easier	done	
on	original	object,	before	the	
transformation	

• apply	M−1	to	ray	and	intersect	
objects	in	their	local	(object	
	coordinates	

Shirley02	

Instancing	

Object	stored	in	untransformed	state	along	with	
the	transformation	matrix	

The	transformation	of	the	object	is	delayed	until	
instantiation/rendering	time	

Bonus:	re-use	objects	without	replicating	them	in	
memory!	

Shirley02	

Caveat	for	Instantiation	with	Scaling	
If	M	includes	scaling,	don’t	re-normalize	d:	you’ll	get	the	
right	t	when	inverse	transforming	intersection	(M−1td)	
•  if	you	re-normalize	d,	tOS ≠ tWS		and	must	be	rescaled	after	inverse	
transform	

	
•  if	you	don’t	re-normalize	d,	tOS = tWS �	intersection	found!	
•  but	don’t	rely	on	tOS	being	true	distance	during	intersection	routines	

Object	Space	World	Space	

tWS tOS

Object	Space	World	Space	

tWS tOS

Durand08	 Akenine-Möller03	

Rules	of	Thumb	for	
Intersection	Testing	

Perform	acceptance	and	rejection	test	
•  try	them	early	on	to	make	a	fast	exit	

Postpone	expensive	calculations	if	possible	

Use	dimension	reduction	
•  e.g.,	3 1D	tests	instead	of	one	complex	3D	test,	
or	2D	instead	of	3D

Share	computations	between	objects	if	possible	

Use	instancing,	delay	transformation	

Accelerating	Intersection	Tests	
Find	the	first-hit	object	

Simplest	linear	approach:	O(Npixels*Mobjects)
Acceleration	techniques	(sublinear	in	Mobjects):	use	
spatial	data	structure	to	reduce	the	number	of	tests	
needed	
• spatial	subdivision:	space	partitioning	
• object	subdivision:	hierarchical	bounding	volumes	

Probably	the	single	most	important	efficiency	
improvement	
• others	include	shadow	caching:	start	shadow	intersection	
search	with	the	last	object	intersected	

Spatial	Subdivision	
Divide	up	space	and	record	what	objects	
are	in	each	cell	
•  store	objects	in	a	3D	array	
•  trace	ray	through	voxel	array	

For	example:	uniform	grid,	quadtree/
octree,	BSP	tree,	kd-tree	(most	popular,	
k-dimensional,	axis-aligned	BSP)	

quad
 Hanrahan09,	Curless08		

Hierarchical	Bounding	Volumes	
Arrange	scene	into	a	tree	
•  internal	nodes	consist	of	primitives	with	very	simple	intersection	tests	
(boxes	or	spheres)	

•  each	internal	node’s	volume	contain	all	objects	in	subtree	
•  leaf	nodes	contain	the	original	geometry	

r1

r2
r3

Curless08,	Hart08		

Precision	Problems	
Numerical	inaccuracy	may	cause	
intersection	to	be	below	surface	
�	causing	surface	to	incorrectly	

shadow	itself	

Move	a	little	along	surface	
normal	before	shooting	shadow	
ray,	or	move	a	little	along	
shadow	ray	to	compute	
intersection	

O’Brien08,	Shirley02,	James07	

Precision	Problems	
Also	when	computing	reflection	ray	
	
And	when	computing	intersection	
with	edges	in	triangle	meshes	
�	must	report	intersection	

Durand08		

Transmission	Ray	Exit	Caveats	

To	compute	Fresnel	reflectance	coefficient	when	
exiting	an	object,	remember	to	invert	the	normal	
and	transmission	ray	
	
Similarly	for	the	computation	of	the	refracted	ray	
exiting	the	object		
	
In	computing	ray-object	intersection	at	the	exit	
point,	be	sure	to	translate	by	ε	in	the	right	
direction	

Ray	Tracing	vs.	Pipelined	Rasterization	

Ray	Tracing	
• ray-centric	
• needs	to	store	scene	
in	memory	

• (mostly)	random	access	
to	scene	

Pipelined	Rasterization	
• triangle	centric	
• needs	to	store	image	
(and	depth)	in	memory	

• (mostly)	random	access	
to	frame	buffer	

Which	requires	less	memory?	Scene	or	frame	buffer?	
frame	buffer	

Which	image	is	easiest	to	access	randomly?	
frame	buffer	due	to	regular	sampling	

Durand	

Interactive	RayTracing	

Advantages	of	ray	tracing:	
•  can	handle	very	complex	scenes	relatively	easily	

•  sublinear	complexity	with	acceleration	(hierarchical	bbox),	
need	not	process	all	triangles	in	scene	

•  provide	complex	materials	and	shading	for	free		
•  easy	(but	expensive)	to	add	global	illumination,	specularities,	etc.	

But	ray	tracing	is	historically	slow	because	
•  hard	to	access	data	in	memory-coherent	way,	cannot	take	
advantage	of	incremental	computation	

•  requires	many	samples	for	complex	lighting	and	materials		

Ramamoorthi	

Interactive	Raytracing	
Leverage	power	of	modern	CPUs:	
develop	cache-aware,	parallel	
implementations	

Modern	GPUs	have	general	
streaming	architecture:	can	map	
various	elements	of	ray	tracing	
kernels	like	eye	rays,	intersection	
tests,	etc.	into	vertex	or	fragment	
programs	

Search	youtube	for	“nvidia	OptiX”	
and	“realtime	ray	tracing”	

Ramamoorthi08	

hothardware.com/News/NVIDIA-Shows-Interactive-
Ray-Tracing-on-GPUs/	

