
EECS	487:	Interactive	
Computer	Graphics	

Lecture	21:		
•  Overview	of	Low-level	Graphics	API	

Metal,	Direct3D	12,	Vulkan	

Console	Games	

Why	do	games	look	and	perform	so	much	better	
on	consoles	than	on	PCs	with	equivalent	specs?	

•  consoles	are	closed	platforms	with	long	shelf	live,	
programmers	can	program	the	hardware	directly	

•  doing	away	with	serialized	call-preparation	bottleneck	
allows	for	better	utilization	of	multiple	CPU	cores	

	

Motivations	for	low-level	graphics	APIs:	

•  faster	graphics	from	reduced	API	overhead	

•  “close-to-metal,”	direct	control	of	the	GPU	

[Anandtech:Smith]	

Low-Overhead,	Low-Level	API	

Whence	the	high	overhead	of	graphics	API?	
•  hardware	abstractions	hide	underlying	platform	diversity,	
providing	programming	convenience	and	flexibility:	

graphics	vs.	system	programming	

•  “newby-friendly”	safety	nets	of	error	checking	and	state	
validation	

	

Code	gurus	(the	ones	writing	game	engines	and	

renderers)	would	rather	have	performance	than	

hand-holding	

[Anandtech:Smith]	

Low-Overhead,	Low-Level	API	

Why	is	this	an	issue	now?	
• GPU	performance	is	far	outstripping	CPU	due	to	the	
massively	parallel	nature	of	graphics	rendering:	API	

overhead	at	the	CPU	is	throttling	GPU	performance	

•  serialized	command	assembly	prior	to	issuing	draw	
calls	restricts	utilization	of	multi-core	CPU	

•  instancing	and	batching	objects	into	a	smaller	number	of	draw	
calls	can	only	help	so	much	

	

Another	advantage:	easier	porting	of	console	

games	to	PCs?	

[Anandtech:Smith]	



How	to	Improve	Performance?	

1. Command	buffer	

a.  reduced	draw	call	overhead	

b. better	command	submission	multi-threading	

2. Baked-in	states	

a.  pipeline	state	objects	

b.  resource	binding	

3. Pre-compiled	shaders	

Biggest	Source	of	CPU	Overhead	

Assembly	of	command	stream	prior	to	issuing	a	
draw	call,	e.g.,	the	gathering	together	of	

•  line	mode	

•  polygon	mode	

•  flat	or	smooth	shading	

•  texture	objects	to	use	
• which	vertex	array	objects	

• which	vertex	buffer	objects	

•  setting	vertex	attribute	pointers	
•  arguments	to	draw	calls	

Done	by	driver	

[Anandtech:Smith]	

Queue	

Single-threaded	Job	Assembly	

GPU	Front-End	

cmd	

driver	

cmd	 cmd	

cmd	

[nvidia:Foley]	

Problem:	single-threaded		job	
assembly	by	CPU	is	often	not	

fast	enough	to	keep	GPU	busy	
CPU	Thread	

CPU	Thread	

Utilizes	
at	most	

2	cores	

command	buffer	

Command	Buffer/List	

Developers	self-assemble	command	stream	into	a	
command	buffer	(Vulkan)	or	command	list	(D3D12)	

Each	command	buffer	is	self-contained,	so	multiple	

buffers	can	be	assembled	in	parallel,	each	on	its	own	
thread/core	without	extra	concurrency	work	

Final	submission	of	the	command	buffers	via	the	

command	queue	is	still	serial,	but	is	highly	efficient	

[Microsoft:Sandy]	

Metal	 D3D12 Vulkan	

MTLCommandBuffer()	 ID3D12CommandList()	 VkCmdBuffer()	

MTLCommandQueue()	 ID3D12CommandQueue()	 VkCmdQueue()	



Queue	

Multi-Threaded	Job	Assembly	

GPU	Front-End	

CPU	Thread	 cmd	 cmd	

CPU	Thread	 cmd	 cmd	

CPU	Thread	

CPU	Thread	 cmd	 cmd	

cmd	 cmd	

cmd	

cmd	

cmd	 cmd	 cmd	 cmd	 cmd	

[nvidia:Foley]	

CPU	Thread	

Command	Buffer	Re-Use	

In	Vulkan	a	command	buffer	can	be	re-used	
•  a	“top-level”	command	buffer	can	“call”	

second-level	command	buffers	

In	D3D12	a	command	list	“recorded”	as	a	bundle	

can	be	submitted	once	to	the	GPU	but	executed	
multiple	times,	with	different	resources,	e.g.,	

different	textures	(much	like	OpenGL’s	retained	
mode	display	list)	

Metal	currently	doesn’t	support	command	buffer	

re-use	

[nvidia:Foley;Microsoft:Sandy]	

D
ir
e
ct

3D
	11

D
ir
e
ct

3D
	1

2

3DMark	–	Multi-thread	Scaling	and	
50%	Better	CPU	Utilization	

User	Mode	
driver	workload	
distributed	
across	multiple	
threads/cores	

App	Logic	

Single-threaded	
bottleneck	
reduced	

Windows	kernel	
time	reduced	

Direct3D	driver	
time	reduced	

Kernel	Mode	
driver	time	
totally	removed	

[Microsoft:Sandy;	Anandtech:Smith]	

Imagination’s	Gnome	Horde	
No	instancing	

Re-use	command	buffers	for	each	tile:	

	

	

	

	

	

	

300	tiles,	13,500	draws/frame,	30	fps,	light	CPU	usage	
Over	400,000	draw	calls/sec,	each	with	a	different	
transformation	with	many	different	materials,	textures,	

blend	modes,	and	shaders	
[Imagination:	Smith]	



Fast	Moving	Camera	

app	cpu	usage	

system	cpu	usage	

[Imagination:	Smith]	

Command	buffers	need	to	be	regenerated	very	frequently	

single-threaded	CPU	
bottleneck	cannot	

feed	GPU	fast	
enough	�	low	FPS	

Command	buffer	
assembly	distributed	to	

multiple	cores	

could	run	CPU	at	
lower	frequency	

Power	Efficiency	

When	CPU	and	GPU	have	to	share	power	and	
thermal	budget	

•  lower	CPU	usage	allows	more	power	and	thermal	budget	
to	go	to	GPU	

•  spreading	workload	across	more	CPU	cores	allow	each	to	
run	at	a	lower	clock	speed,	further	reducing	power	usage	as	
compared	to	running	a	single	thread	at	a	high	frequency	

(to	feed	the	GPU)	

[Intel;Lauritzen;Anandtech:Barrett&Smith]	

D3D12:CPU	uses	1/3	the	
power	of	GPU,	allow	more	
GPU	processing,	rendering	
sped	up	by	over	70%

D3D12:Or	maintain	
the	same	rendering	
performance	at	50%	
power	usage

D3D11:	CPU	uses	
as	much	power	as	
GPU	

[Intel:Lauritzen]	

50,000	Asteroids	(draws/frame)	

Pipeline	State	Objects	(PSOs)	

Problem:	draw-time	validation	of	shader	states	
delays	hardware	setup	and	reduces	the	number	of	

draw	calls	per	frame	

	

Solution:	bake	(compile	and	validate)	pipeline	states	

into	PSOs	that	are	finalized	on	creation,	switching	

PSOs	have	lower	overhead	than	computing	
hardware	state	on	the	fly	

[Microsoft:Sandy]	



Pipeline	State	Objects	
Contains	all	static	state	for	entire	3D	pipeline	
• shaders,	vertex	attribute	formats,	rasterization,	color	
blend,	depth	stencil,	etc.		

Created	outside	of	the	performance	critical	paths	

PSO	can	be	cached	for	re-use,	even	saved	to	disk/

cloud	for	re-use	across	app	runs	

[nvidia:Daniell;AMD]	

PSO	

What	Doesn’t	Go	into	a	PSO?	
Resource	bindings	
•  the	actual	vertex,	index,	constant	buffers	
•  textures,	samplers,	etc.	

	

	

	

	

	

	

Fixed-function	states	that	do	not	cause	shader	

recompilation:	viewport,	color	blend	constants,	
polygon	offset,	scissor,	stencil	masks	and	refs,	etc.	

[nvidia:Foley]	

GPU	State	Vector	
Pipeline	State	Object	

Textures	 Buffers	

Samplers	

Binding	Tables	

Descriptor	Tables	and	Pool/Heap	
Problem:	to	use	different	resources,	e.g.,	texture,	an	
app	must	bind	and	rebind	them	to	fixed	and	limited	

bind	slots	(descriptors)	and	issue	multiple	draw	calls	

[Microsoft:Sandy;nvidia:Foley]	

GPU	State	Vector	

Pipeline	State	Object	

Textures	
Buffers	

Samplers	

Binding	Tables	

Descriptor	Table	and	Heap/Pool	
Solution:	pre-write	multiple	sets	of	descriptors	to	
descriptor	heap;	changing	resources	simply	switches	

descriptor	sets	already	resident	in	GPU	memory	

[nvidia:Foley;Microsoft:Sandy]	

GPU	State	Vector	

Pipeline	State	Object	

Textures	

Buffers	

Descriptor	Tables	

Samplers	

Root	Table	



GPU	Memory	Management	

With	high-level	API,	to	pass	data	from	app	to	
GPU,	first	allocate	a	driver-managed	buffer	and	

copy	the	data	before	passing	the	data	to	the	
shader	⇒	CPU	overhead	

	

With	low-level	API,	a	developer	simply	maps	the	

GPU	memory	address	and	writes	to	that	memory	
location	directly,	no	CPU	intervention	

[Imagination:Smith]	

Pre-Compiled	Shader	

Vulkan:	
•  pre-compiles	shaders	into	a	common	
intermediate	representation	

•  provide	some	IP	protection,	developers	can	distribute	
shaders	in	a	compiled	intermediate	representation	
instead	of	in	source	

•  pre-compiled	shaders	also	speed	up	draw	calls	

	

Metal	also	pre-compiles	shaders	

[Anandtech:	Smith]	

[Khronos]	

and	others	

open	source	

Game	Engines	
other	languages,	e.g.,	
C++	Shading	Language	

Standard	Portable	Intermediate	
Representation:	core	in	Vulkan	

Vulkan	Shader	Programming	

other	IR,	
e.g.,	LLVM	

GLSL	to	SPIR-V	
compiler	

open	source	
translator	

More	Predictable	Performance	

Previously:	app	submits	a	draw	call,	maps	a	buffer,	etc.	

Driver	might	(GPU	dependent):	

•  compile	shaders	

•  insert	synchronization	fences	into	GPU	schedule	
•  flush	caches	
•  allocate	memory	

	

With	low-level	API	all	the	above	must	be	done	by	the	

app	itself,	but	driver	performance	across	vendors	
becomes	more	predictable	

[nvidia:Foley]	



Why	Vulkan	is	Not	for	Beginners	

Must	handle	multi-threading	and	concurrency/
synchronization	

Must	manage	memory	allocation	and	usage	

	

These	are	optional	in	OpenGL,	but	mandatory	

in	Vulkan	

Summary	of	Features	

[nvidia:Foley;Anandtech:Smith]	

Tech Metal Direct3D12 Vulkan

command	buffer	 ✔ ✔ ✔

pipeline	state	objects ✔ ✔
✔

descriptor	table ✗ ✔
✔

tile-based	render	pass	 ✔ ✗ ✔

multi-adapter	 ✗ ✔ ✔?

Vulkan	and	D3D12:	
• both	similar	to	Mantle	to	start	with	
• Mantle	supports	multi-GPU	

• not	as	low	level,	to	be	cross-vendor	and	cross-platform	

Tile-based	Architectures	

“Mobile	GPU”	usually	means	“tile-based	GPU”		
• most	Android	and	all	iOS	devices	use	tile-based	rendering		

•  Vulkan	and	Metal	have	support	for	tile-based	architecture,	but	not	
Direct3D 12

• tiling	reduces	use	of	expensive	off-chip	memory	bandwidth	

[Google:Hall;Imagination:Sommefeldt]	

Immediate-Mode	Rendering	

Fragment	shading,	including	texture	sampling,	
performed	even	on	fragments	that	will	eventually	

fail	the	depth	test	
• requires	accessing	off-chip	memory	

•  inefficient	use	of	off-chip	bandwidth	

[Imagination:Sommefeldt;Merry]	



Tile-based	Architectures	

Tile-based	rendering	splits	framebuffer	up	into	tiles	
(e.g.,	16×16	or	32×32	pixels)	and	sort	all	triangles	
on	tile	using	on-chip	storage	before	fragment	
shading	

[Merry]	

Multi-Adapter	Support	

PCs	can	contain	multiple	graphics	cards	

Apps	can	enumerate	graphics	cards	

•  can	create	a	device	abstraction	for	each	

Some	graphics	cards	have	multiple	GPUs	

• each	with	its	own	engines	and	memory	

Apps	should	be	able	to	assign	work	to	

any	GPU	on	any	graphics	card	
• create	queues	on	any	engine	and	submit	command	buffers	

• allocate	resources	in	memory	associated	with	any	GPU	

[Microsoft:Boyd]	

Multi-Adapter	Support	

Options:	
• Alternate-frame	rendering	(AFR):	frame	pacing	becomes	
an	issue	if	the	GPUs	are	of	different	performance	

• Split-frame	rendering	

• Work	sharing	of	individual	frames	

D3D12	Explicit	Multi-Adapter	(EMA)	mode	allows	

exchange	of	multiple	data	types	between	GPUs,	
beyond	just	finished,	rendered	images	

But	transferring	data	over	PCIe	bus	is	slow	and	with	

high	latency!	

[Anandtech:Smith]	

Feature	Sets/Levels	

Hardware	feature	scoping	
•  can	be	defined	for	different	platforms	or	versions	of	the	API	

•  all	features	listed	in	a	set	must	be	supported	

•  developers	can	develop	against	Feature	Sets	
•  features	enabled	at	device	creation	time	

[Microsoft:Sandy;Anandtech:Smith]	

Apple	 Apple?	Imagination?	Khronos?	Locked	out?	



References	
Smith,	R.,	“Microsoft	Announces	DirectX12,”	Anandtech,	Mar.	24,	2014
Smith,	R.,	“Understanding	AMD	Mantle,”	Anandtech,	Sep.	26,	2013
Smith,	R.,	“Some	Thoughts	on	Apple’s	Metal	API,”	Anandtech,	Jun.	3,	2014
Smith,	R.,	“Khronos	Announces	Next	Generation	OpenGL	Initiative,”	Anandtech,	Aug.	11,	2014
Chester,	B.,	“Comparing	OpenGL	ES	to	Metal	on	iOS,”	Anandtech,	Jun.	15,	2015
Sandy,	M.,	“DirectX	12,”	DirectX	Developer	Blog,	Mar.	20,	2014
Lauritzen,	A.,	“DirectX	12	on	Intel,”	Aug.	11,	2014
Yeung,	A.,	“DirectX	12	–	Looking	back	at	GDC	2015,”	Mar.	9,	2015
Langley,	B.,	“Windows	10 and	DirectX	12	Released!,”	DirectX	Developer	Blog,	Jul.	29,	2015
Smith,	R.,	“Microsoft	Details	Direct3D	11.3	&	12	New	Rendering	Features,”	Anandtech,	Sep.	18,	2014
Smith,	R.,	“The	DirectX	12	Performance	Preview,”	Anandtech,	Feb.	6,	2015
Smith,	R.	and	Cutress,	I.,	“Exploring	DirectX	12:	3DMark	API	Overhead	Feature	Test,”	Anandtech,	Mar.	27,	2015
Smith,	R.,	“Next	Generation	OpenGL	Becomes	Vulkan,”	Anandtech,	Mar.	3,	2015
Smith,	A.,	“Trying	out	the	new	Vulkan	graphics	API	on	PowerVR	GPUs,”	Imagination	PowerVR	Graphics	Blog,	Mar.	3,	2015
Smith,	A.,	“Gnomes	per	second	in	Vulkan	and	OpenGL	ES,”	Imagination	PowerVR	Graphics	Blog,	Aug.	10,	2015
Foley,	T.,	“Next-Generation	Graphics	APIs:	Similarities	and	Differences,”	ACM	SIGGRAPH	2015
Sellers,	G.,	“A	Whirlwind	Tour	of	Vulkan,”	ACM	SIGGRAPH	2015
Hall,	J.,	“Vulkan	on	Android,”	ACM	SIGGRAPH	2015
Hall,	J.,	“Using	Next-Generation	APIs	on	Mobile	GPUs,”	ACM	SIGGRAPH	2015
Daniell,	P.,	“Vulkan	on	NVIDIA	GPUs,”	ACM	SIGGRAPH	2015
Boyd,	C.,	“Direct3D	12,”	ACM	SIGGRAPH	2015
Yeung,	A.,	“DirectX	12	Multiadapter,”	DirectX	Developer	Blog,	Apr.	30,	2015
Smith,	R.,	“GeForce+Radeon:	Previewing	DirectX	12 Multi-Adapter,”	Anandtech,	Oct.	26,	2015
Merry,	B.,	“Performance	Tuning	for	Tile-Based	Architecture,”	OpenGL	Insights,	eds.	Cozzi,	P.	and	Riccio,	C.,	2012


