
EECS	487:	Interactive	
Computer	Graphics	

Lecture	16:		
•  Phong	Illumination	Model	

•  Shading	

Phong	Illumination	Model	

A	local	illumination	model	
•  one	bounce:	light	→	surface	→	viewer	
	

Lighting	a	single	point	
	
At	the	point:	

n:	surface	normal	(orientation	of	surface)	
 l:	light	vector	(surface	to	light)	
v:	viewing	vector	(surface	to	eye)	
θ:	light	angle	of	incidence	

 ϕ:	viewing	angle	 v

n

l
θ ϕ

Phong	Illumination	Model	
Approximate	surface	color	as	
sum	of	three	components:	
•  an	ideal	diffuse	component	
•  a	glossy/blurred	specular	component	
•  an	ambient	term	

+

=

=

+

sd diffuse	light	intensity	

ss specular	light	intensity	

sa ambient	light	intensity	

Light	sources:	

Surface	Reflection	Coefficients	

ma ambient	color	reflection	

md diffuse	color	reflection	

ms specular	color	reflection	

mshi shininess	(blurriness)	

me emissive	color	intensity	

Approximate	BRDFs:	not	physically	based	
	
Modify	surface	color	by	changing	reflection	
coefficients	based	on:	
• material	type	
• surface	finish	
• texture	maps	
• what	looks	good	
•  artistic	license		
•  trial	and	error	
•  personal	library		

Diffuse	Example	

Where	is	the	light?	
	
Where’s	the	normal	
direction	at	the	brightest	
point?	

Ideal	diffuse	surface	reflects	light	equally	in	all	
directions,	according	to	Lambert's	cosine	law:	
•  amount	of	light	energy	that	falls	on	surface	and	gets	
reflected	is	proportional	to	the	incidence	angle,	θ	

•  perceived	brightness	(reflectance)	is	view	independent	

Ideal	Diffuse	Reflectance	

θ

Durand	

Ideal	Diffuse	Reflectance	

Durand	

At	the	microscopic	level,	an	ideal	
diffuse	surface	is	a	very	rough	surface	
• microfacets	are	oriented	in	any	which	way	
•  examples:	chalk,	clay,	surface	of	moon	

Curless	

Ideal	Diffuse	Model	
Amount	of	light	energy	that	falls		
on	surface	is	proportional	to		
incidence	angle,	θ:	
cd = sd � md cos θ
	
For	normalized	n	and	l:	
cd = sd � md max((n•l), 0)
• (n•l) < 0 � cos θ < 0 � θ > 90º,		
light	source	is	behind	surface	

• why	must	n	and	l	be	normalized?	

RTR2	

�

n

�

l

�

θ
u·v = u v cosθ ⇒ cosθ = u·v

u v

Diffuse	Reflectance	and	Viewing	Angle	
Lambert’s	Cosine	Law:	amount	of	light	energy	that	falls	on	
surface	and	gets	reflected	is	proportional	to	incidence	angle,	θi
•  cos	θi =	dot	product	of	light	vector	with	normal	(both	normalized)	

	

Shouldn’t	the	amount	of	energy	reflected	also	be	proportional	
to	viewing	angle,	θr?	

•  no,	whereas	larger	θi	means	
energy	arriving	over	area	
dA cos θi	is	spread	across	the	
larger	area	dA,	larger	θr	simply	
means	collecting	energy	from	
the	same	area	dA,	but	channelling	
it	through	the	smaller	area	dA cos θr	

n

Surface	2 Surface	1

n

dA

dA cos θ
θ

π/2 − θ

Recall:	
sin	(π/2	–	θ) = cos	θ	

TP3,	FvD94

Accounts	for	highlight	seen	on	objects	
with	smooth,	shiny	surfaces,	such	as:	
• metal	
•  polished	stone	
•  plastics	
•  apples	
•  skin	

Ideal	Specular/Mirror	Reflectance	

Curless,Zhang	

Ideal	Specular/Mirror	Reflectance	

Reflection	only	at	mirror	angle	
•  highlight	intensity	depends	on	
viewing	direction	

Model:	all	microfacets	of	mirror	
surface	are	oriented	in	the	same	
direction	as	the	surface	itself	
•  examples:	mirrors,	highly	polished	
metals	

Durand	

Phong	Specular	Reflection	

Simulates	a	highlight	

Reflection	angle	=	incidence	angle	=	θ	

Most	intense	specular	reflection	when	v = r

How	to	compute	r?	
r = −l + 2(n•l)n
(in	OpenGL,	specular	term	is	0	if	l • n = 0)	

n

lr

-l

2(n ⋅ l)n (n ⋅ l)n

θ	 θ	 φ	
v

r
n

l

Glossy	Reflectors	
Real	materials	tend	to	deviate	significantly	from	ideal	
mirror	reflectors	⇒	highlight	and	reflections	are	blurry	

Also	known	as:	“rough	specular”,	“directional	diffuse”,	
or	“glossy”	reflection	

(there	are	no	ideal	diffuse	surfaces	either	…)	

Durand	

Glossy	
Reflectors	

Durand	

Simple	empirical	model:	
• we	expect	most	of	the	reflected	light	to	travel	in	
the	direction	of	the	ideal	reflection	ray	
•  but	due	to	variations	in	microfacet	orientations,	
some	of	the	light	will	be	reflected	just	slightly	
off	from	the	ideal	reflected	direction	
•  as	we	angle	away	from	the	reflected	ray,	we	
expect	to	see	less	light	reflected	

Surface	Roughness	

Perfect Mirror Glossy Surface Less Shiny Surface Diffuse Surface

increasing	roughness	

specular 	diffuse	
Schlick	 As	v	angles	away	from	r,	specular	reflection	falls	

off,	simulating	“glossy”	reflection:	
	
	
	
	
	
	
	

less	glossy/ 	more	glossy/blurry	
more	specular	

Phong	“Glossy”	Reflection	Model	

TP3	

v v

Phong	specular	model:	
cs = ss � ms cos φ = ss � ms max((r • v), 0)	

Phong	“Glossy”	Reflection	Model	

φ	

cos φ	

v

r
n

l

v
r

RTR3	

Material	Glossiness	
To	account	for	the	shininess	of	different	material:	
cs = ss � ms max((r • v), 0)mshi	

larger	mshi	gives	tighter	and	shinier	highlight,	with	
sudden	dropoff,	simulating	a	more	mirror-like	surface	

angle	

sp
ec

ul
ar
	in

te
ns

it
y	

mshi:

Phong	Specular	Reflection	

larger mshi ,	tighter	highlight	�	

la
rg
er
	m

s ,
	s
hi
ni
er
	�

	

TP3	

Back	to	micro	facets:	
• model	surface	by	a	collection	of	tiny	mirrors	

•  specular	reflectance	comes	from	mirrors	oriented	
halfway	between	l	and	v, in	direction	of	h

Blinn-Phong	(Blinn-Torrance)	Model	

Manocha	

l n

ω ω

h

v

Model	specular	reflection	with		“halfway”	
vector	(h)	instead	of	r	
• consider	the	microfacet	through	point	p	that	
reflects	light	perfectly	to	the	viewer	

• h	is	the	normal	of	this	plane,	it	is	halfway	
between	l	and	v	(by	definition),	h	normalized	

• angle	between	h	and	n	is	β; v = r	when	h = n	
(β	is	not	the	angle	between	v	and	r)	

• specular	reflection	modeled	as:	
cs = ss � ms (n • h)4mshi = ss � ms (cos β)4mshi 	

Blinn-Phong	

h =
l + v
l + v

�

l

�

l

�

h

�

p

v

�

n

�

l

�

r

�

p

v

h

β

Illumination	Models	
A	rendering	process	can	be	modeled	as	an	integral	
equation	representing	the	transport	of	light	through	
the	environment	�	the	rendering	equation	

Local	illumination:	an	approx.	of	the	rendering	eqn.	
•  assumes	light	is	scattered	only	once:	light	from	light	source	
is	reflected	by	a	surface	and	modulated	on	its	way	towards	
the	eye	

Global	illumination:	
•  light	rays	traveling	from	light	to	surface	may	be	

•  blocked	by	intervening	surfaces	(shadows)	or		
•  bent	or	scattered	by	intervening	material	(refraction	and	atmospheric	
effects)	or		

•  light	arriving	at	a	surface	may	come	indirectly	via	another	
surface	(reflection	and	color	bleed)	

“Approximates”	the	contribution	of	all	indirect	
illumination	
	
Surface	uniformly	lit	
•  areas	with	no	direct	
illumination	are	not	
completely	dark	

•  independent	of:	
•  light	direction	
•  surface	normal	
•  viewing	angle	
	

Spheres	rendered	with	ambient	reflection	only

Phong	Ambient	Term	

Phong	 ρa ρd ρs ρtotal

θ = 60º

θ = 25º

θ = 0º

Putting	It	All	Together	
Phong	Illumination	Model	

ct = masa + (md (n ⋅ l)+ms (r ⋅v)
mshi) f (d)s

Durand	

OpenGL	Light	Sources	
glLightfv(lightname,param,value)
•  parameters	

• GL_AMBIENT
• GL_DIFFUSE
• GL_SPECULAR
• GL_POSITION

• GL_SPOT_DIRECTION
• GL_SPOT_CUTOFF
• GL_SPOT_EXPONENT

• GL_CONSTANT_ATTENUATION
• GL_LINEAR_ATTENUATION
• GL_QUADRATIC_ATTENUATION

	
Turning	on	the	lights:	
• glEnable(GL_LIGHTING)
• glEnable(GL_LIGHT0)

OpenGL	Lighting	and	Reflectance	
/* Initialize material property, light source,
 lighting model, and depth buffer. */
void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 50.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_SMOOTH);

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
}

OpenGL	Material	Properties	
glMaterial(face,param,value)
•  face	
• GL_FRONT
• GL_BACK
• GL_FRONT_AND_BACK

•  parameters	
• GL_AMBIENT
• GL_DIFFUSE
• GL_AMBIENT_AND_DIFFUSE
• GL_SPECULAR
• GL_SHININESS
• GL_EMISSION

See	Redbook	Chapter	5	for	
techniques	to	minimize	
performance	costs	associated	
with	changing	material	
properties	

Choosing	the	Parameters	

Experiment	with	different	parameter	settings	
A	few	suggestions:	
• ma + md + ms < 1
• use	a	small	ma	(~0.1)	
• try	mshi ∈ [0, 100]

material	 md ms mshi

metal	 small,	color	of	metal	 large,	color	of	metal	 large	

plastic	
medium,	color	of	
object	

medium,	color	of	
light	(or	white)	

medium	

planet	 varying	 0 0

Curless	

TP3	

For	non-metals,	e.g.,	plastics,	highlight	color	is	color	
of	light	(plastics	has	a	transparent/white	coating)	

For	metals,	e.g.,	brass,	highlight	depends	on	surface	
color	
	
	
	
	
	
	
	

plastic 	metal 	clay	

Highlight	Color	

Apodaca&Gritz	

Emissive	Term	

Material’s	emissive	parameter	me
• assumed	not	lighting	other	objects	

ct = me +masa + (md (n ⋅ l)+ms (v ⋅r)
mshi) f (d)s

Funkhouser	

Surface

Attenuation	Model	
Whereas	the	ambient	term	simulates	indirect	lighting,	
attenuation	model	and	fog	simulate	scattering	effect	

Intensity	attenuation:	light	falls	off	the	further	away	
one	gets	from	the	source	
• distinguishes	overlapping	surfaces	
having	the	same	reflection	parameters	

• radiant	energy	disperses	as	1/d2

•  d	is	the	distance	from	the	light	source	to	surface	
•  reason	for	the	inverse	square	falloff?	

• attenuation	function	f (d) = 1/(a0+a1d+a2d
2)

•  user	defined	constants	a0 ,	a1 ,	a2
•  since	we’re	not	modeling	atmospheric	scattering,	

1/d2	often	appears	too	harsh	
•  instead,	we	use	f (d) = 1/(a0+a1d)	or	no	attenuation

Lighting	with	attenuation:	c’ = f (d)c

d 1

d 2

Global	Ambient	and	Multiple	Lights	

Global	ambient	light	source:	cg = sg � ma
•  sg	set	with:	
glLightModel*(GL_LIGHT_MODEL_AMBIENT,ambient_light)

	

Multiple	lights:	

!

ct = cg +me + ca
(k) +

k=1

n

∑ f (d (k))(cd
(k) + cs

(k)),

k:!light!number,!not!exponentiation

Akenine-Möller02	

Fog	
Simple	atmospheric	effect	
•  a	little	better	realism		

•  help	to	convey	distances	
•  2	forms	of	depth	cueing	(ignoring	scattering)	
•  light-to-object	distance	conveyed	by	light	attenuation	
•  object-to-viewer	atmospheric	scattering	simulated	by	fog	

Fog	
color	of	fog:	cf	
color	of	surface:	cs	
fog	effect:	

cp = f cs + (1 − f) cf , f ∈ [0,1]
	
How	to	compute	f	?	

•  linear:	
	

•  exponential:	
	

•  exponential-squared:	

	

	

can	also	be	a	function	of	height	off	the	ground	

fp =
zend − zp
zend − zstart

fp = e
−d f zp

fp = e
−(d f zp)

2

RTR3	

!

fp:!fog!factor!at!point!p

zend − zstart : the!foggy!range
d f : fog!density

radial-	or	range-based,	
not	simply	z-based	

Fog	in	OpenGL	

glEnable(GL_FOG);

glHint(GL_FOG_HINT,GL_[NICEST|FASTEST]);

 // per fragment or per vertex

glFog*(GL_FOG_MODE, GL_[LINEAR|EXP|EXP2]);
glFog*(GL_FOG_[START|END|DENSITY], param);

glFog*(GL_FOG_COLOR, param);

To	specify	a	fog	depth	for	a	given	vertex:	

glFog*(GL_FOG_COORD_SRC, GL_FOG_COORD);

glFogCoord*(z);

glVertex(…);

Lighting	and	Shading	
Lighting:	computing	interaction	between	light	and	surfaces	of	
different	materials,	and	interaction	with	the	geometry	of	
objects	to	determine	the	luminous	intensity	reflected	from	a	
specified	3D	point	

Shading:	performing	the	lighting	computations	on	polygonal	
objects	and	coloring	the	pixels	

flat	shading 	Gouraud	shading 	Phong	shading	

RTR3	

Flat	Shading	
Entire	polygon	displayed	with	the	same	intensity	
• calculate	intensity	from	the	reflection	model	
• use	the	surface	normal	(for	triangles)	
• compute	an	average	normal	(for	>3	vertex	polygons)	

Is	a	valid	shading	model	when:	
• object	is	truly	planar	
(not	an	approximation	of	a	curved	surface)	

• all	k	light	sources	are	far	enough	away	that	
n • l(k)

 is	constant	over	the	polygon	surface	
• viewing	position	is	far	enough	away	that	

n • h is	constant	over	the	polygon	surface		

In	1865,	Mach	discovered	that	
human	eyes	perceive	a	surface	
with	flat	shading	of	different	
hues	as	having	a	“fluted”	aspect	
due	to	the	abrupt	change	in	
shades	of	color	(discontinuity	in	
the	first	derivative	of	the	
shading	function)	

perceived	signal	

Mach	Bands	

measured	signal	

Riesenfeld06	

Problem	with	Flat	Shading:	
Mach	Band	Illusion	

Lateral	Inhibition	

Mach	Band	Illusion	is	due	to	lateral	inhibition	of	
the	human	visual	system:	

• neighboring	receptors	are	connected	
• when	one	fires,	it	inhibits	its	neighbors	from	firing	

Effect:	
•  eye	sensitive	to	difference	from	surrounding	area	

•  good	for	edge	and	motion	detection	

Riesenfeld06	

Gouraud	Shading	

Match	intensity	across	polygon	edges	

Linear	interpolation	of	color	across	polygon	surface	

Gouraud	shading	algorithm:	
• determine	average	normal	at	each	vertex	(averaged	over	the	
normals	of	all	polygons	that	share	the	vertex)	

• compute	color	at	each	vertex	using	the	average	normal	
• linearly	interpolate	color	across	a	single	polygon	surface	
(GL_SMOOTH	does	only	the	last	step!	GL_FLAT	colors	polygon	with	the	
color	of	the	last	vertex)	

navg =
ni

i=1

n

∑

ni
i=1

n

∑

n = all polygons that

share the vertex

Gouraud	Shading	Example	

1.  Compute	average	normal	at	each	vertex	(1, 2, 3)
2. Compute	colors	c1,	c2,	c3
3.  Compute	colors	c4,	c5

4. Compute	color	cp	
	
	
	

Or	use	barycentric	coordinates!		
Steps	2-4	were	cheap	enough	to	be	implemented	in	
hardware	even	for	fixed	pipeline	GPU	

c4 =

y4 - y2
y1 - y2

c1 +
y1 - y4
y1 - y2

c2

c p =

x5 - xp

x5 - x4
c4 +

xp - x4
x5 - x4

c5

1

2

3

4 5

p scanline	

when	there’s	an	abrupt	change	in	the	orientation	of	two	
polygons	and	there’s	discontinuity	in	the	1st	derivative	of	
the	shading	function	
	
	
	
	
	
	
	
	
	
	
	
effect	can	be	ameliorated	with	increased	polygon	count	or	
Phong	shading	…	

Mach	Band	not	Eliminated	

Highlights	depend	on	polygonal	shape	

Does	not	capture	highlight	in	the	
middle	of	polygon	
•  c1 = 0	because	(n•h) < 0
•  c2 = 0	because	(n•l) < 0
•  any	interpolation	of	c1	and	c2	will	be	0

Shows	up	in	animation	as	flashing	highlights	
between	frames	as	orientation	of	polygons	change	

Limitation:	Wrong	Highlights	

c1 = 0 c2 = 0
area	of	desired	

highlight	

Limitation:	Wrong	Highlights	
Why	does	Gouraud	give	inaccurate	simulation	of	highlights?	
•  color	at	vertex	may	not	be	(highlight)	color	inside	the	polygon	

	
What	would	give	the	most	accurate	simulation	of	highlights?	
•  compute	normal	of	actual	surface	(not	polygon-approximated	
surface)	at	each	pixel	and	color	accordingly	�	very	expensive!	

	
	
	
	
	
Phong	shading:	interpolate	normal	of	vertices	across	polygon	
surface	and	color	each	pixel	according	to	interpolated	normals	

Phong	Shading	
Algorithm:	
• determine	average	normal	at	each	vertex	
• linearly	interpolate	per-pixel	normal	
across	surface	

• compute	color	for	each	pixel	using	the	
value	of	the	approximated	per-pixel	normal	

	
	
	
	
	
Phong	illumination	model	≠�
Phong	specular	reflection	≠	
Phong	shading	

n =
y - y2
y1 - y2

n1 +
y1 - y
y1 - y2

n2
�

n1�

n3

�

n2 n
scanline

c1 = 0 c2 = 0
area	of	desired	

highlight	

OpenGL	Lighting	and	Reflectance	
/* Initialize material property, light source,
 lighting model, and depth buffer. */
void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 50.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_SMOOTH); // or GL_FLAT

// interpolate color of vertices, but does not
// average normals at the vertices

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
}

Where	in	the	Pipeline?	

Framebuffer	

Vertex	Processing	

Primitive	Processing	

Rasterization	

Fragment	Processing	

Display	

Application	 vertex colors
computed

vertex colors
interpolated
across polygon
(Gouraud shading)

per-pixel
Phong shading
(expensive)

