E} Hierarchical Modeling

Hierarchical modeling is essential for transforming
objects with attached parts, e.g., in animation:

EECS 487: Interactive - eyes move with head

+ hands move with arms
- feet move with legs

Computer Graphics

Without such structure the model

Lecture 15: falls apart, e.g., eyes don't follow
* Scenegraph when head moves
* Lighting and Reflection This idea can be extended to the

entire scene — scene graph
- collect every objects into a single hierarchy

Scene Representation Scene as a Flat List of Objects

How to represent a scene? Can represent scene as a flat list of objects

- list of objects . - but editing (e.qg., delete) requires updating many nodes
« transform of each object

« can use minimal primitives: an ellipse is a transformed circle

- transform applies to points on object

Scene representation: data structures+transforms hOUlse mff door window window
[

T"l:] el ol vl =l el O ol ol ‘.D'r.‘-. Twz-. 7,3-. TN-. r,s..' T,s-l T|70. T|3-. oo
i b
@ m oo
- [4 HE

.

Marschner Marschner

Hierarchical Representation

Introduce a new abstract data type: group

- treats a set of objects as one object (group)

« contains list of references to member objects

« lets the data structure reflect the rendering structure
« enables high-level editing by changing just one node

T"D 12.. Tae ¥ Tge ¥ Tce v Tos ¥

IT;-. 1'4.- Ts'- rs-.l Ine-. r,;-. r,e..l
T7OO Ts°. Tv'. T|a°. Y|9'. Tm'.

'Tu'. le'. Tu'.l lm-. Yn'. Tu'.l

ool sl el
Scene Graph Uiivee
m Example |
= \ \
wde

A e

A

a4
\ >tttz I B)= J
D v Q - TransformGroup :

e

TransformGroun

; \ Physical Physical
%) (G

Marschner,Schulze

T
ViewPlatform
A ShapeaD ShaneaD \

Scene Graphs

All parts of the scene are represented in one graph
- each node in the graph is one scene element, including
- objects, cameras, lights, materials, transformations, ...
« switch/select: specify which children to enable, etc...
» simulation procedures, shaders
« other scene graphs
« simplest form: tree
« every node has one parent
- interior nodes = groups
« leaf nodes = objects in the scene
+ edges = membership of object in group
- transforms are associated with nodes or edges

+ each transform applies to all geometry below it
Marschner,TP3,Schulze

The Graphics Software Stack

applications

scene graph/rendering engine

graphics API

Schulze

Scene Graphs

To draw the scene, the graph is walked

each time a node is traversed, either the rendering
state is changed or something is rendered with the
current state

- an operation performed on a node, such as rendering,
culling, and transform, affects all of its children
« e.g., traversing a light node turns on the light for all its children
« transforms accumulate along path from root to leaves

Makes modeling and animation of complex
scenes easier by breaking them down into a
hierarchy of simpler ones with their own local
behavior

Instancing Example

Allow multiple references to nodes
- reflects more of drawing structure
« allows editing of repeated parts in one operation

T"l:] nefl\ Tae v Teew Tcow Toew Teew Trow

Ir;-. [l [T"'DI
ZORY ES RS |

Chenney

-
]|

o ol
714'. TIS'.

Marschner

Scene Graph Advantages

Hierarchical processing
« each sub-hierarchy naturally defines a bounding volume,
e.g., for culling, collision detection, or ray-tracing
computation

Object-oriented paradigm
« each object is defined in its own local coordinate systems

- objects can have other properties besides shape
« color, shading parameters
« approximation parameters (e.g., degree of tessellation)
« user interaction, etc ...
* property nodes can be applied to sub-hierarchy,
e.g., paint entire window green

« objects are self-contained and re-usable
« instancing: an object can be a member of multiple groups

TP3,Marschner

Multiple Instantiations

Object defined once, used many times,
in many places in the scene

« an object with multiple instantiations has multiple parents
+ not the “make a copy” instantiation of C++

- transforms still accumulate
along path from root to leaf

- objects may have multiple paths
from root to leaves

Building
|
[Floor l] [Fluor 2] [Floor 3] [Floor 4] [FlourS]

Floor Furniture

« transform may be different
for each instance

Office Furniture
‘ graph ISNo Ionger atree, [Bookshelf 1) (Desk 1] (Desk 2] (Chair1] [ChairK]

but a directed acyclic graph
(DAG, no cycle)

(Bookshelf] | D\ésk) ((\Ihair]‘_| Definitions

Schulze,Marschner,Jame:

Scene Graph Toolkits and APIs

No broadly accepted standard

APIs focus on different applications
« OpenSceneGraph (openscenegraph.orq)
« scientific visualization, virtual reality, GIS
+ optimized for memory requirements
+ open source version of historical scene graph APIs for SGI IRIS GL

» OpenInventor (0ss.sgi.com/projects/inventor/)
« OpenGL Performer (0ss.sgi.com/projects/performer/)

+ Ogre3D (www.ogre3d.org)and a host of others
+ games, optimized for high-performance rendering (speed)

« Javascript scenegraphs, WebGL compatible:
* three.js (threejs.org)
« “alightweight 3D library with a very low level of complexity”
» scenel)S(scenejs.orq)
« CAD, medical, and engineering visualization

+ Modeling systems’ proprietary libraries
+ optimized for editing flexibility

Common Functionalities

Resource management

- asset management (geometry, textures, materials,
animation sequences, audio)

- shader management

* memory management

 multi-threading

« (server clustering)

Rendering libraries:
« bump mapping

+ shadows

« particle system

Schulze

Basic Scene Graph Operations

High-level scene management

- edit transformation
* need good Ul

- transform object in world coordinate frame
« traverse path from root to leaf

« grouping and ungrouping

* re-parenting
+ moving node from one parent to another

Performance Optimizations
Culling

« early discard of invisible parts of scene

Level-of-detail
« use lower poly count version for distant (small) object

Computing bounding volume hierarchy for
- culling

- collision detection

- rendering, e.g., ray-tracing, gsplat

Scene graph compilation/optimization
- render objects with similar attributes (textures, materials,
shaders, geometry) in batches

« efficient use of low-level API

+ avoid state changes in rendering pipeline
Serious scene graphs should have
implementation of these techniques

Marschner

Schulze

Scene Graph Encoding

3ds max
CCOLLADA | ©®
Collada prenaer
« asset exchange using an XML schema custom tools

+ e.g., passing models to a physics engine

« asset transformation from high-level modeling
description to platform-specific optimized description

« can describe everything to do with a scene:
geometry with full skinning, advanced E’ \\j
A

material and visual effects, animation, C;ELXD

physical properties and collisions

Conditi;mg Conditioning
Pipeline Pipeline

EECS 487: Interactive
Computer Graphics

Lecture 15:

* Lighting and Reflection

Scene Graph Encoding

X3D (web3d.orqg)
« VRML with XML syntax, replaced VRML in July 2004
« primary goal is for interactive visualization of 3D assets

- specifies behaviors and interactions and includes
« arun-time model that enables viewing, navigation, picking, and scripting
+ an APl to manipulate the scene-graph at runtime

3dsMax

X3DOM (Coccuon) Derclopment
« HTML5/X3D

integration Physies
« declarative 3D (vs.
procedural WebGL)

* x3dom.org

i
.. Publishing

Asset Creation

Object Appearance in CGl

Object appearance in CGl depends on its
« shape: the geometry of its surfaces and position wrt camera
» shade: its illumination environment and optical properties

Rendering program separates:

- geometric processing: transformation, hidden surface
removal, etc. from

- optical processing: propagation and filtering of light

lllumination Models

A rendering process can be modeled as an integral
equation representing the transport of light through
the environment = the rendering equation

Local illumination: an approx. of the rendering eqn.
« assumes light is scattered only once: light from light source
is reflected by a surface and modulated on its way towards

the eye

Global illumination:
- light rays traveling from light to surface may be
« blocked by intervening surfaces (shadows) or

« bent or scattered by intervening material
(refraction and atmospheric effects) or

« light arriving at a surface may come indirectly via another
surface (reflection and color bleed)

Local lllumination

A photograph of a lit sphere
shows not a uniformly
colored circle but a circular
shape with many gradation
or shades of color, giving
the impression of 3D

Local illumination consists of two major aspects:
1. light source distribution function
2. surface reflectance distribution function

Global lllumination Effects

Properly determining the right color is really hard
« translucency

- refraction

« particle scattering
« color bleed

Light Sources

Light is approximated by the RGB components
emitted from the light source

For light, the RGB coefficients represent

percentages of full intensity of each color

«c=(10,10, 1.0)is white

«¢=(0.5,0.5,0.5) is white at half intensity,
which appears gray

Light Sources

Grassman’s Laws:

- if two lights emit at ¢, = (R, G|, B)) and
¢, = (R,, G,, B,), the light that arrives
atthe eyeis
c=¢de=R+R,,G+G,,B+B) »2

- scaling light intensity: ¢(s a) = s c(a) N

Point and Directional Sources

Piigne - X £

Point light: 1(x) =

-XH P;,gm
« light arriving at a point (x) on the surface

« L always points towards the light
» must be normalized
« to specify an OpenGL light at light position (1, 1, 1):

Glfloat light position([] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv (GL LIGHTO, GL POSITION, light position);

Directional light: 1(x) = 1.,
« the l vector does not vary across the surface
+ OpenGL light shining from direction (1, 1, 1):

Glfloat light position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv (GL_LIGHTO, GL_POSITION, light position);

Light Sources

Types of light sources

* point light, e.g., light bulb: light direction
changes over surface

« directional light, e.g., sunlight: “distant” light,
direction is constant

* spotlight: point source with directional fall-off

* area source: luminous 2D surface: radiates light

from all points on surface, generates soft shadows
point light directional spotlight

I
b B

Spotlight

Point source, with intensity a function of -, g
specified with:

+ position: the location of the source
glLightfv (GL LIGHTO,GL POSITION, light posn);

« direction (s,): the center axis of the light
glLightfv (GL LIGHTO0,GL SPOT DIRECTION, light dir);
« intensity maximal along direction s
+ when light moved, direction must be updated along with position

« cut-off (@): how broad (in degree) the beam is
glLightfv(GL LIGHTO0,GL SPOT CUTOFF,45.0);
- intensity falls off angling away from s,

« exponent (s,): how the light tapers off at the edges of the cone
glLightfv (GL LIGHTO,GL SPOT EXPONENT, 1.0);

= max(-l s, 0)

v/

&)

U

+ intensity scaled by exponent:s,,,,

OpenGL Light Sources

glLightfv (lightname, param,value)
. parameters

- GL POSITION

- GL_SPOT DIRECTION
- GL SPOT CUTOFF

- GL SPOT EXPONENT

Why is Winter Light Weaker
than Summer Light?

The amount of light received and reflected by a surface

depends on angle of incidence ()

« bigger at normal incidence

« smaller slanted, by how much?

« Lambert’s Cosine Law:
proportional to cos

i
| Recall:

RS
\"\\ dAcoéG \\\
e 72-0 . |Surfacel
o
dA

Durand, FvD94

How Lights Are Positioned

All computations are carried out in eye coordinates
« store lights in eye coordinates

« lights converted to eye coordinates using current
ModelView transform

- lights move with eye
+ default GL_LIGHTO - directional from the back,
with specular component
* glEnable (GL LIGHTING) ;
* glEnable (GL_LIGHTO) ;
- don't forget to set the normals properly

Surface Normal

The intensity of a surface color depends on the
orientation of the surface wrt the light and viewer

The surface normal vector describes
this orientation at a point
« is perpendicular to the tangent

plane of the surface (recall
how to transform normals)

4k

7

light
direction

normal

- is often called just “the normal
vector” or “the normal”

» will use n or N to denote

Normals are either supplied v

by the user or automatically computed

Specifying Normals

Normals can be specified using g1Normal3* ()
Normals are associated with vertices

Specifying a normal sets the current normal
« remains unchanged until user alters it

- usual sequence:

glNormal3, glVertex,
glNormal3, glVertex,
glNormal3, glVertex,..

Normals are not normalized by default

« can be automatically normalized by calling
glEnable (GL NORMALIZE) or
glEnable (GL_RESCALE NORMAL)

« but this is slow, instead normalize as needed

OpenGL’s Simple Reflectance Model

If the light is emitting ¢, = (R, G,, B)) and the
material reflects ¢,, = (R,,, G,,, B,,), the light that
arrives attheeyeisc =¢,® ¢, = (R,R,,,G,G,,, B;B,)

Ared ball in white light reflects red
and absorbs green and blue

Ared ball in green light appears black
(no light is reflected)

Material Appearance

Factors effecting materials appearance
- color

- texture

« intensity and shape of highlights

« glossiness

For surface color, the RGB coefficients
represent percentages of reflected
proportions of each color

Ngan,Hanrahan

OpenGL Lighting and Reflectance

/* 1Initialize material property, light source,
lighting model, and depth buffer. */
void init (void)

{

GLfloat mat_ specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat shininess[] = { 50.0 };
GLfloat light position([] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH) ;

glMaterialfv (GL _FRONT, GL SPECULAR, mat_ specular);
glMaterialfv (GL_FRONT, GL SHININESS, mat shininess);

glLightfv (GL_LIGHTO, GL POSITION, light position);
glEnable (GL LIGHTING) ;

glEnable(GL_LIGHTO);
glEnable (GL_DEPTH_TEST) ;

Clamping vs. Scaling

RGB coefficients must be in [0.0, 1.0] range

Reflected colorc = (¢;® ¢,) ® ¢, =

[(R,+ R)R,;,. (G, + G,)G,,. (B, + B,)B,] may have
component > 1.0, e.g., bright orange is (2.5,1.5,0.5)
« if clampedto 1.0, (1.0, 1.0, 0.5) is yellow

« if scaled by 1/2.5 instead, we get (1.0,0.6,0.2),
which retains the original orange hue and saturation

Microfacet Model [Cook&Torrance82]

Reflectance at (1, v) is a product of the
» number of mirrors oriented halfway betweenland v,
- percentage of unblocked mirrors, and

« Fresnel coefficient: fraction of light reflected (not absorbed),
function of angle of incidence and index of refraction

N\
P

v

/\/J\/\/""\/\/\/\/\/\/\/

Durand

Torrance-Sparrow Reflectance Model

Microfacet Theory: model surface as a collection
of tiny mirrors [Torrance & Sparrow 1967]

Example of microfacet distribution:
« surface of the ocean

« viewer sees “bright” pixels
+ when microfacets are pointing
halfway between the sun and the eye
+ other microfacets are obstructed,
either in shadow or hidden

Durand

Measure of Reflectance: BRDF

Different material emits, absorbs,
or reflects light differently

Bidirectional Reflectance Distribution Function (BRDF)

p (w;, w,):

+ ratio of radiance incoming from one 00, 6.0,.0,)
direction that gets reflected in n

another direction
- relates incoming light energy to outgoing
« function based on directions of incidence and view

- unifying framework for many materials Neo.

« (assume isotropic material, reflectance
is invariant to rotation about the normal,
unlike velvet or satin, e.g.)

Lozano-Perez

Types of Reflection

We generally recognize 3 types of reflection:

|deal Specular
« Reflection Law
* Mirror

Ideal Diffuse
« Lambert’s Law
» Matte

Rough Specular
« Directional diffuse
* Glossy

How to Obtain BRDF?

Gonioreflectometer

Source Driver Hoop

Uight Source

Reflectance Detector — ¢ > lamp

camera 51 |

Hanrahan Ward,Hanrahan

