
EECS	487:	Interactive	

Computer	Graphics	

Lecture	13:		
•  Planar	Geometric	Projections	

•  Orthographic	projection	

•  Perspective	projection	
•  Projections	in	OpenGL	

Planar	Geometric	Projections	

Planar	⩴	project	onto	a	plane	(vs.	planetarium,	e.g.)	

Geometric	⩴	projectors	are	straight	lines	

(vs.	curved	lines	in	cartography,	e.g.)	

Projection	⩴	map	from	n	to	n-1	dimensions	

	

Euclidean	geometry	describes	shapes	“as	they	are”	

• properties	of	objects	that	are	unchanged	
by	rigid	motions:	lengths,	angles,	parallel	lines	

Projective	geometry	describes	objects	“as	they	appear”	

•  lengths,	angles,	parallel	lines	become	

“distorted”	when	we	look	at	objects	

Projection	System		

Common	elements:	

• Center	of	Projection	(COP)	

(for	perspective	projection)/	

Direction	of	Projection	(DOP)	

(for	parallel	projection,	≈COP	at	∞)	

• Projection/view/picture/image	plane	(PP)	

• Projectors/sightlines	
	

	

	

	

	

	

Parallel																					Perspective	

Lozano-Perez01	 Perspective	

Parallel	

Taxonomy	of		

Planar	Geometric	Projections	

top, bottom,

front, back,

left, right

One-point

Two-point

Three-point

Perspective

Projection

Cavalier

Cabinet

General

Oblique

Isometric

Dimetric

Trimetric

Axonometric Multiview

Orthographic

Parallel

Projection

Planar Geometric Projections

Multiview	

Orthographic	

• preserves	ratios,		
but	not	angles	(�	not	visible)	

• parallel	lines	remain	parallel	

�	is	considered	

an	affine	transform	

James07	

• projection	plane	parallel	to	one	
coordinate	plane	(project	onto	

plane	by	dropping	coordinate	

perpendicular	to	plane)	

• projection	direction	perpendicular	
to	projection	plane	

• good	for	exact	measurements	

(CAD,	architecture)	

Axonometric	Orthographic	

Axonometric:	

• projection	plane	is	not	parallel	to	any	coordinate	plane	
• projection	direction	perpendicular	to	projection	plane	
	

Isometric:	

• preserves	lengths	
along	3	principal	axes	
• principal	axes	make	

the	same	angle	with	

each	other	(120º)	

120º

120º

120º

Parallel	Orthographic	Projections	

Are	we	done?	

P =
1 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Yes,	but	we’ve	lost	depth	(z)	information,	can’t	do:	

• hidden	surface	removal	

•  lighting,	etc.	
Need	to	preserve	z	dimension!	

�	map	view	volume	to	canonical	view	volume	

Akenine-Möller	&	Haines	02	

Orthographic	Projection	

View	volume	defined	by	

left,	right,	bottom,	top,	near,	and	far	planes:	

	

	

	

	

Map	it	to	cvv:	

Shirley02	

Simple	case:	view	volume	axis-aligned	with	world	

coordinate	system	

•  the	view	volume	is	in	negative	z,	n > f
	

	

More	generally,	the	view	

volume	is	not	axis-aligned	

with	world	CS	(it	will	always	

be	axis-aligned	with	eye	CS):	

Orthographic	Projection	Setup	

Shirley02	

From	an	arbitrary	axis-aligned	

bounding	box	to	canonical	view	volume	

•  translate	and	scale:	

	

What	would	the	T	and	S	matrices	be?	

Orthographic	Projection	

T =

1 0 0 − l + r
2

0 1 0 − b + t
2

0 0 1 − n + f
2

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

S =

2
r − l

0 0 0

0 2
t − b

0 0

0 0 2
n − f

0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Po = ST =

2
r − l

0 0 − l + r
r − l

0 2
t − b

0 − b + t
t − b

0 0 2
n − f

− n + f
n − f

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

RTR3	

Orthographic	Projection	and	

Viewing	Transform	

From	an	arbitrary	viewing	

volume	to	canonical	view	volume	

•  translate	eye	to	origin	
•  transform	to	eye	coordinate	system	

•  apply	orthographic	projection	

2
r − l

0 0 − l + r
r − l

0 2
t − b

0 − b + t
t − b

0 0 2
n − f

− n + f
n − f

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Shirley02	

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 −ex
0 1 0 −ey
0 0 1 −ez
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 Mworld−>canonical =

 Meye→canonical Mworld→eye

Perspective	Projection	

Objects	appear	smaller	as	distance	from	

center	of	projection	(eye	of	observer)	increases	

(perspective	foreshortening)	⇒	looks	more	realistic	

(human	eyes	naturally	see	things	in	perspective)	

Preserves:	

•  lines	(collinearity)	
•  incidence	
(“lies	on”,	intersects)	

• cross	ratio	

Does	not	always	preserve	parallel	lines:	

•  lines	parallel	to	projection	plane	remain	parallel	

•  lines	not	parallel	to	projection	plane	converge	to	a	single	
point	on	the	horizon	called	the	vanishing	point	(vp)	

The	Cross	Ratio	

For	the	4	sets	of	4 collinear	points	in	the	figure,	the	cross-ratio	for	
corresponding	points	has	the	same	value	(can	permute	the	point	

ordering)	

p3 − p1 p4 − p2
p3 − p2 p4 − p1

p1 − p3 p4 − p2
p1 − p2 p4 − p3

p2 − p1 p4 − p3
p4 − p1 p3 − p2p1 p2

p3

p4

pi =

xi

yi
zi
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

deMenthon	

Seitz08	

Classes	of	Perspective	Projection	

one-point:	projection	plane	parallel	to	one	
coordinate	plane	(�to	two	coordinate	axes,	

one	coordinate	axis	cuts	projection	plane)	

	

two-point:	projection	plane	parallel	to	one	

coordinate	axis	(two	coordinate	axes	cut	

projection	plane)	

James07	

Classes	of	Perspective	Projection	

three-point:	projection	plane	
not	parallel	to	any	coordinate	

axis	(three	coordinate	axes	cut	

projection	plane)	

Duell	

James07	Hulsey	

Projective	Geometry	in	2D
Consider	lines	and	points	in	P
We	extend	to	3D	to	simplify	dealing	with	infinity	

•  origin	o	out	of	P,	at	a	distance	= 1	from	P

To	each	point	m	in	P	we	can	associate	a	single	ray	p = (x1, x2, x3)

To	each	line	l	in	P	we	can	associate	a	single	plane	(A, B, C)
•  the	equation	of	line	L	in	projective	geometry	is Ax1 + Bx2 + Cx3 = 0

deMenthon	

o

p = (x1, x2, x3)

x1x2

x3
(A, B, C) = L

P
m

l

Homogeneous	Coordinates	

The	ray	p = (x1, x2, x3)	and (λx1, λx2, λx3)		
are	the	same	and	are	mapped	to	the	same	point	m	in	P
•  p	is	the	coordinate	vector	of	m,	

(x1, x2, x3)	its	homogeneous	coordinates

The	planes	(A, B, C) and	(λA, λB, λC)	are	the	same	

and	are	mapped	to	the	same	line	l	in	P
•  L	is	the	coordinate	vector	of	l,

(A, B, C)	its	homogeneous	coordinates	

Point	p’	is	on	line	L	if	L•p’ = 0

deMenthon	

o

p = (x1, x2, x3)

x1x2

x3L = (A, B, C)

P
m

l

(A, B, C)

p’

Perspective	Divide	

How	do	we	“land”	back	from	the	projective	world	to	

the	2D	Cartesian	world	of	the	plane?

•  for	point,	consider	the	intersection	of	ray	p = (λx1, λx2, λx3)	
with	the	plane	x3 = 1	�	λ = 1/x3,	m = (x1 / x3, x2 / x3, 1)

•  for	line,	intersection	of	plane	Ax1 + Bx2 + Cx3 = 0	with	the	

plane	x3 = 1	is	line	l = Ax1 + Bx2 + C = 0

Called	“perspective	divide”	

	

For	the	mathematically	

inclined,	or	studying	

computer	vision:	what’s	

the	geometric	interpretation	

of	x3 = 0?
deMenthon	

o

p = (x1, x2, x3)

x1x2

x3L = (A, B, C)

P
m

l

(A, B, C)

Projective	Geometry	

Two	lines	always	meet	at	a	

single	point,	and	two	points	

always	lie	on	a	single	line	

Projective	geometry	does	

not	differentiate	between	

parallel	and	non-parallel	lines	

Points	and	lines	are	dual	of	

each	other	

To	return	from	homogeneous	

coordinates	to	Cartesian	

coordinates,	divide	by	x3	(w)

deMenthon,	Durand08	

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

3D	Projective	Geometry	

These	concepts	generalize	naturally	to	3D
	

Homogeneous	coordinates	

•  projective	3D	points	have	four	coordinates:	p = (x, y, z, w)

Projective	transformations	

•  represented	by	4×4	matrices	

Seitz08	

Vanishing	Points	

What	happens	to	two	parallel	lines	that	are	not	

parallel	to	the	projection	plane?	

The	parametric	equation	for	

a	line	is:	

	

	

	

After	perspective	transform:	

At	the	limit,	with	t�∞,	we	get	

a	point!	[(vx/vz)d, (vy/vz)d, 1]T

	

Each	set	of	parallel	lines	

intersect	at	a	vanishing	point	

l = p + tv =

px
py
pz
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+ t

vx
vy
vz
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!

px
'

p 'y
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

px + tvx

py + tvy
(pz + tvz) / d

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

after
perspective

divide

⎯ →⎯⎯⎯

px + tvx

pz + tvz
d

py + tvy
pz + tvz

d

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Perspective	Projection	

Given	the	coordinates	of	the	orange	point	

find	the	coordinates	of	the	green	point	

	

	

	

	

Is	perspective	projection	simply:	

(x,	y,	z, 1)	�	(xd/z,	yd/z,	d, 1),	
then	map	to	screen	by	throwing	

away	the	z-coordinate:	(xd/z,	yd/z, 1)?	

tanθ = y '
d
= y
z

y ' = yd z
y

y’

d

z

view plane

e

y

z g
θ

Projecting	(x,	y,	z, 1)	�	(xd/z,	yd/z,	d, 1)	and	throwing	

away	d	does	not	preserve	the	depth	information	

	

Instead	want	P	such	that:	
	

	

	

	

	

	

Just	like	orthographic	projection,	we	need	to	map	

the	view	volume	to	a	CVV	instead	of	a	2D	plane	

Perspective	Projection	Matrix	

P

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→

x
d
z

y d
z
z '
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

perspective	

divide	

preserve	the	relative	

depth	information	of	

each	point	

Projection	System	Setup	

The	coordinate	system	

The	eye	(e)	
•  acts	as	the	focal	point	and	COP	

•  placed	at	the	origin	
•  looking	down	(g)	along	the	
negative	z-axis	(axis	of	projection)	

	

The	screen	

•  lies	in	the	projection	plane	
• ⟘	to	the	z-axis,�to	the	x-y	plane	
•  located	at	distance	d	from	the	eye	

•  d is	a.k.a.	the	focal	length	

(x, y, z, 1)
(x’, y’, d, 1)

e g

What	does	it	mean	for	w=1?	
What	does	it	mean	for	w>1?	
What	is	the	homogeneous	

coordinate	(HC)	when	

projecting	from	3D	to	2D?	

Perspective	Projection	View	Frustum	

View	volume	(frustum:	truncated	pyramid):	

• defined	by	(left,	right,	top,	bottom,	near,	far)	clipping	planes	

• near	(n)	and	far	(f)	distances	along	–z-axis,	
both	negative	numbers,	n > f

	

• nothing	nearer	than	n	will	be	drawn	

�  avoid	numerical	problems	during	

rendering,	such	as	divide	by	0
• nothing	further	than	f	will	be	drawn	

�  avoid	low	depth	precision	for	distant	objects	

	

To	preserve	relative	depth	information,	

we	must	map	the	frustum	to	a	CVV	instead	of	a	2D	plane	

View volume

From	Frustum	to	CVV	

perspective	

projection,	

including	

perspective	

divide	

RTR3	

orthographic	

projection	

Want	projection	matrix	P	such	that:	

What	should	P	be?	
• we’re	projecting	from	3D	to	2D (not	4D	to	3D),	

use	the	HC	of	the	projected	point	to	store	its	depth	

info	(i.e.,	the	“real”	HC	in	3D	to	2D	projection)	

• first	attempt:	

	

	

	

	

	

Any	problem?	

Perspective	Projection	Matrix	

P

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→

x d z
yd z
z '
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!

Pp =

d 0 0 0
0 d 0 0
0 0 d 0
0 0 0 z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

xd
yd
zd
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

after
perspective

divide

⎯ →⎯⎯⎯

x d z
yd z
d
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Second	attempt:	for	a	more	generic	matrix,	

grab	the	depth	info	from	the	point	itself:	

		

	

	

	

	

Are	we	done?	

• the	projected	x-,	y-,	and	HC	are	correct	already,	but	after	
perspective	divide,	all	depths	mapped	to	d!	
• 3rd	row	of	matrix	must	be	tweaked	to	preserve	relative	

depth	info	(z’)	

!

Pp =

d 0 0 0
0 d 0 0
0 0 d 0
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

xd
yd
zd
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

after
perspective

divide

⎯ →⎯⎯⎯

x d z
yd z
d
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Perspective	Projection	Matrix	

Perspective	Projection	Matrix	

Let	d = n

	

The	1st	and	2nd	rows	of	P	are	correct	

already,	for	the	3rd	row	(third	attempt):	

• the	computation	of	z’	does	not	rely	on	x	and	y,	
set	the	first	two	numbers	of	the	row	to	0
• we	can	use	the	remaining	two	numbers	to	

compute	z’,	let	them	be	unknowns	a	and	b	for	now:	

!

Want:!P

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→

x n z
yn z
z '
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!

Frustum 	Rectangular	box	

!

Pp =

n 0 0 0
0 n 0 0
0 0 a b
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

xn
yn

az + b
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

after
perspective

divide

⎯ →⎯⎯⎯

x n z
yn z
a + b z
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

For	the	3rd	row	of	P:	
• want	a	and	b	such	that:	

• or,	for	z=n, a+b/z = n	and	for	z=f, a+b/z = f

Perspective	Projection	Matrix	

!

P

x
y
n
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→

x
y
n
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!and!P

x
y
f
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→

x n f
yn f
f
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!

for!z = n : !a + b n = n, !a = n − b n
for!z = f : !a + b f = f ,

substituting!for!a:! n − b n() + b f = f
b n − f() = f − n()nf , !b = −nf

substituting!for!b:!a = n − −nf() n , !a = n + f

nf

Perspective	Divide	

Then	divide	by	the	homogenous	coordinate	

�	squeezing	the	frustum	into	a	rectangular	box	

Shirley02	

Note	how	n/z	
conveniently	cancels	

the	negative	signs	out	

n 0 0 0
0 n 0 0
0 0 n + f −nf
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

nx
ny

(n + f)z − nf
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

perspective
divide⎯ →⎯⎯⎯

xn z
yn z

n + f − nf
z

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Perspective	Foreshortening	

What	is	the	effect	of	perspective	divide	

on	the	shape	of	objects?	

	

	

	

	

	

	

	

	

�	After	perspective	divide,	an	object	further	away	

appears	to	be	smaller	than	an	equal-size	object	nearby	

Curless08	

From	Frustum	to	CVV	

Now	reposition	and	scale	the	rectangular	box	

	

	

	

	

	

	

Assume	viewing	transform	has	been	

done,	so	after	perspective	divide	

(not	shown)	we’re	only	dealing	with	

axis-aligned	viewing	volume	

Pp = STP = PoP =

2
r − l

0 0 − r + l
r − l

0 2
t − b

0 − t + b
t − b

0 0 2
n − f

− n + f
n − f

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

n 0 0 0
0 n 0 0
0 0 n + f −nf
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

2n
r − l

0 l + r
l − r

0

0 2n
t − b

b + t
b − t

0

0 0 n + f
n − f

2nf
f − n

0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

See	also	http://www.songho.ca/opengl/gl_projectionmatrix.html	

Recall	that	after	perspective	divide	we	have:	

	

As	a	consequence	of	perspective	foreshortening,	

z’	is	not	linearly	related	to	z:	

Losing	Depth	Precision	

x '
y '
z '
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

nx z
ny z

n + f − fn
z

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

!

z ' = n + f − nf
z

Δz ' ≈ nfΔz
z2

; !Δz ≈ z2

fn
Δz '

max !Δz !is!when!z = f

At!z = f ,!Δz = f
n
Δz ', !as!n→ 0,

near!the!far!plane!(f),!Δz→∞!but!must!be!covered!by

the!same!Δz ' !as!smaller!Δz !that!are!closer!to!n

Redbook10

n → 0

As	a	consequence	of	perspective	foreshortening,	

z’	is	not	linearly	related	to	z:	as	z	gets	closer	to	f,	
the	same	amount	of	Δz’	must	represent	larger	Δz

For	example:	let	n = 10, f = 90,		
for	z1 = 10, z’1 = 10 Δz1 = 1	
for	z2 = 11, z’2 = 18.182 Δz’1= 8.182	
.	.	.	

for	zk-1 = 89, z’k-1 = 89.888 Δzk-1 = 1	
for	zk = 90, z’k = 90 Δz’k-1= 0.112

Losing	Depth	Precision	

Implication	of	the	non-linear	mapping:	

•  information	on	the	far	plane	loses	precision	

�	z-buffer	punch	through	or	z-fighting	
•  distances	closer	to	origin	are	exaggerated	

Effect	is	ameliorated	if	n	set	further	from	origin	

Losing	Depth	Precision	

far=100

RTR3	

Akeley07	

Δz1 Δz2

Δz’1, n

Δz’2, f

Δz’1, n

Δz’2, f

z-Buffer	Quantization	

z-values	stored	as	non-negative	integers	

Integers	are	represented	in	b	(=16	or	32)	bits,	
giving	a	range	of	B	(= 2b)	values	{0, 1, 2, . . . , B-1}

Floating	point	z’-values	are	discretized	into	integer	bins:	
Δz’	= (f−n)/B,	so	for	example	for	n = 10,	f = 90,	both	
z1 = 89,		z’1 = 100−(900/89) = 89.888 and	
z2 = 90, z’2 = 100−(900/90) = 90	
are	both	discretized	to	z’ = 90

Moral	of	the	story:	choose	n	as	far	away	from	origin	as	

possible	and	f	as	near	as	possible	(to	reduce	Δz’)	

