

EECS 487: Interactive Computer Graphics

Lecture 13:

- Planar Geometric Projections
- Orthographic projection
- Perspective projection
- Projections in OpenGL

Planar Geometric Projections

Planar == project onto a plane (vs. planetarium, e.g.)

Geometric = projectors are straight lines (vs. curved lines in cartography, e.g.)

Projection = map from *n* to *n*-1 dimensions

Euclidean geometry describes shapes "as they are"

 properties of objects that are unchanged by rigid motions: lengths, angles, parallel lines

Projective geometry describes objects "as they appear"

 lengths, angles, parallel lines become "distorted" when we look at objects

Projection System

Common elements:

- Center of Projection (COP) (for perspective projection)/ Direction of Projection (DOP) (for parallel projection, \approx COP at ∞)
- Projection/view/picture/image plane (PP)

Perspective

Taxonomy of Planar Geometric Projections

Lozano-Perezo1

Multiview Orthographic

- projection plane parallel to one coordinate plane (project onto plane by dropping coordinate perpendicular to plane)
- projection direction perpendicular to projection plane
- good for exact measurements (CAD, architecture)

	top
	front right side
	bottom
r	 preserves ratios, but not angles (→ not visible parallel lines remain parallel

- parallel lines rema
 ⇒ is considered
 - an affine transform

Jameso7

Axonometric Orthographic

Axonometric:

- projection plane is not parallel to any coordinate plane
- projection direction perpendicular to projection plane

Isometric:

- preserves lengths along 3 principal axes
- principal axes make the same angle with each other (120°)

Age of Empires II © Microsoft Corporation

Parallel Orthographic Projections

Yes, but we've lost depth (z) information, can't do:

- hidden surface removal
- lighting, etc.

Need to preserve *z* dimension!

 \Rightarrow map view volume to canonical view volume

Orthographic Projection

View volume defined by left, right, bottom, top, near, and far planes:

Map it to cvv:

Orthographic Projection Setup

- Simple case: view volume axis-aligned with world coordinate system
- the view volume is in negative z, n > f

More generally, the view volume is not axis-aligned with world CS (it will always be axis-aligned with eye CS):

Orthographic Projection and Viewing Transform

Orthographic Projection

From an arbitrary axis-aligned bounding box to canonical view volume

• translate and scale:

What would the T and S matrices be?

	$\frac{2}{r-l}$	0	0	$-\frac{l+r}{r-l}$		$\frac{2}{r-l}$	0	0	0	T =	- 1	0	0	$-\frac{l+r}{2}$
$\mathbf{P}_o = \mathbf{ST} =$	0	$\frac{2}{t-b}$	0	$-\frac{b+t}{t-b}$	S =	0	$\frac{2}{t-b}$	0	0		0	1	0	$-\frac{b+t}{2}$
	0	0	$\frac{2}{n-f}$	$-\frac{n+f}{n-f}$		0	0	$\frac{2}{n-f}$	0		0	0	1	$-\frac{n+f}{2}$
	0	0	0	1 .	J	0	0	0	1 _		0	0	0	1

Perspective Projection

Objects appear smaller as distance from center of projection (eye of observer) increases (perspective foreshortening) \Rightarrow looks more realistic (human eyes naturally see things in perspective)

Preserves:

- lines (collinearity)
- incidence
- ("lies on", intersects)

• cross ratio

Does not always preserve parallel lines:

- lines parallel to projection plane remain parallel
- lines not parallel to projection plane converge to a single point on the horizon called the vanishing point (vp)

The Cross Ratio

For the 4 sets of 4 collinear points in the figure, the cross-ratio for corresponding points has the same value (can permute the point ordering)

Classes of Perspective Projection

one-point: projection plane parallel to one coordinate plane (// to two coordinate axes, one coordinate axis cuts projection plane)

two-point: projection plane parallel to one coordinate axis (two coordinate axes cut projection plane)

Classes of Perspective Projection

Projective Geometry in 2D

Consider lines and points in P

We extend to 3D to simplify dealing with infinity • origin \mathbf{o} out of \mathbf{P} , at a distance = 1 from \mathbf{P}

To each point **m** in **P** we can associate a single ray $\mathbf{p} = (x_1, x_2, x_3)$

To each line **I** in **P** we can associate a single plane (A, B, C) • the equation of line L in projective geometry is $Ax_1 + Bx_2 + Cx_3 = 0$

Jameso7

Homogeneous Coordinates

The ray $\mathbf{p} = (x_1, x_2, x_3)$ and $(\lambda x_1, \lambda x_2, \lambda x_3)$ are the same and are mapped to the same point \mathbf{m} in $\mathbf{P} \cdot \mathbf{p}$ is the coordinate vector of \mathbf{m} ,

 (x_1, x_2, x_3) its homogeneous coordinates

The planes (A, B, C) and $(\lambda A, \lambda B, \lambda C)$ are the same and are mapped to the same line l in P

Projective Geometry

Two lines always meet at a single point, and two points always lie on a single line

Projective geometry does not differentiate between parallel and non-parallel lines

Points and lines are dual of each other

To return from homogeneous coordinates to Cartesian coordinates, divide by x_3 (w)

Perspective Divide

How do we "land" back from the projective world to the 2D Cartesian world of the plane?

- for point, consider the intersection of ray $\mathbf{p} = (\lambda x_1, \lambda x_2, \lambda x_3)$ with the plane $x_3 = 1 \Rightarrow \lambda = 1/x_3$, $\mathbf{m} = (x_1 / x_3, x_2 / x_3, 1)$
- for line, intersection of plane $Ax_1 + Bx_2 + Cx_3 = 0$ with the plane $x_3 = 1$ is line $\mathbf{l} = Ax_1 + Bx_2 + C = 0$

3D Projective Geometry

These concepts generalize naturally to 3D

Homogeneous coordinates

• projective 3D points have four coordinates: $\mathbf{p} = (x, y, z, w)$

Projective transformations

- represented by $4{\times}4$ matrices

Vanishing Points

What happens to two parallel lines that are not

parallel to the projection plane? The parametric equation for a line is:

 $\mathbf{l} = \mathbf{p} + t\mathbf{v} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} + t \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$

After perspective transform:

At the limit, with $t \rightarrow \infty$, we get a point! $[(v_x/v_z)d, (v_y/v_z)d, 1]^T$

Each set of parallel lines intersect at a vanishing point

Perspective Projection

Given the coordinates of the orange point find the coordinates of the green point

 $\tan \theta = \frac{y'}{d} = \frac{y}{z}$ $y' = y \frac{d}{z}$

Is perspective projection simply: $(x, y, z, 1) \rightarrow (xd/z, yd/z, d, 1),$ then map to screen by throwing away the *z*-coordinate: (xd/z, yd/z, 1)?

Perspective Projection Matrix

Projecting $(x, y, z, 1) \rightarrow (xd/z, yd/z, d, 1)$ and throwing away d does not preserve the depth information

Instead want **P** such that: $\mathbf{P}\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} x \frac{d}{z} \\ y \frac{d}{z} \\ z' \\ 1 \end{bmatrix} \xrightarrow{\text{perspective divide}} \\ \begin{array}{c} y \frac{d}{z} \\ z' \\ 1 \end{bmatrix} \xrightarrow{\text{preserve the relative depth information of each point}} \\ \end{array}$

Just like orthographic projection, we need to map the view volume to a CVV instead of a 2D plane

Projection System Setup

The coordinate system

The eye (e)

- acts as the focal point and COP
- placed at the origin
- looking down (g) along the negative z-axis (axis of projection)

The screen

- lies in the projection plane
- \perp to the *z*-axis, // to the *x*-y plane
- ${\scriptstyle \bullet}$ located at distance d from the eye
- d is a.k.a. the focal length

COP

g

PP

(x', y', (d, 1))

(x, y, z, (1))

`v'

view plane

7

Perspective Projection View Frustum

View volume (frustum: truncated pyramid):

defined by (left, right, top, bottom, near, far) clipping planes

View volume,

Far

Near

(Hither)

- near (n) and far (f) distances along -z-axis, both negative numbers, n > f
- nothing nearer than n will be drawn
- → avoid numerical problems during rendering, such as divide by 0
- nothing further than f will be drawn f
- → avoid low depth precision for distant objects

To preserve relative depth information, we must map the frustum to a CVV instead of a 2D plane

COP

From Frustum to CVV

Perspective Projection Matrix

	•	x		xd/z									
Want projection matrix P such that: P										у	$ \rightarrow$	yd/z	
												<i>z</i> '	
What should P be?											J	I	
• we're projecting from 3D to 2D (not 4D to 3D),													
use the HC of the projected point to store its depth													
info (i.e., the "real" HC in 3D to 2D projection)													
• first attempt:													
[d	0	0	0		x]	xd		after		xd/z	
Pp =	0	d	0	0		y		yd				$ \begin{array}{c} x d/z \\ y d/z \\ d \end{array} $	
IP-	0	0	d	0		z		zd	pe	erspective divide		d	
	0	0	0	z		1		z				1	
Any problem?													

Perspective Projection Matrix

Second attempt: for a more generic matrix, grab the depth info from the point itself:

Are we done?

- the projected x-, y-, and HC are correct already, but after perspective divide, all depths mapped to d!
- 3rd row of matrix must be tweaked to preserve relative depth info (*z*')

Perspective Projection Matrix

Frustum Rectangular box Let d = nWant: $\mathbf{P}\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} xn/z \\ yn/z \\ z' \\ 1 \end{bmatrix}$ The 1st and 2nd rows of P are correct already, for the 3rd row (third attempt): • the computation of z' does not rely on x and y, set the first two numbers of the row to 0 • we can use the remaining two numbers to compute z', let them be unknowns a and b for now: $\mathbf{Pp} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} xn \\ yn \\ az+b \\ \hline perspective \\ divide \end{bmatrix} \begin{bmatrix} xn/z \\ yn/z \\ a+b/z \\ \hline n \end{bmatrix}$

Perspective Projection Matrix

For the 3rd row of **P**: • want *a* and *b* such that: $\mathbf{P}\begin{bmatrix} x \\ y \\ n \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ n \\ 1 \end{bmatrix} \text{ and } \mathbf{P}\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} xn/f \\ yn/f \\ f \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} xn/f \\ yn/f \\ f \\ 1 \end{bmatrix}$ • or, for *z*=*n*, *a*+*b*/*z* = *n* and for *z*=*f*, *a*+*b*/*z* = *f* for *z* = *n* : *a*+*b*/*n* = *n*, *a* = *n*-*b*/*n* for *z* = *f* : *a*+*b*/*f* = *f*, substituting for *a*: (*n*-*b*/*n*)+*b*/*f* = *f*]*nf b*(*n*-*f*) = (*f*-*n*)*nf*, *b* = -*nf* substituting for *b*: *a* = *n*-(-*nf*)/*n*, *a* = *n*+*f*

Perspective Divide

Then divide by the homogenous coordinate ⇒ squeezing the frustum into a rectangular box

Perspective Foreshortening

What is the effect of perspective divide on the shape of objects?

⇒ After perspective divide, an object further away appears to be smaller than an equal-size object nearby

From Frustum to CVV

Now reposition and scale the rectangular box

$$\mathbf{P}_{p} = \mathbf{STP} = \mathbf{P}_{o}\mathbf{P} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Assume viewing transform has been
done, so after perspective divide
(not shown) we're only dealing with
axis-aligned viewing volume
$$= \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\ 0 & 0 & \frac{n+f}{n-f} & \frac{2nf}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

See also http://www.songho.ca/opengl/gl_projectionmatrix.html

Losing Depth Precision

Recall that after perspective divide we have:

$$= \begin{bmatrix} nx/z \\ ny/z \\ n+f - \frac{fn}{z} \end{bmatrix}$$

y'

z' 1

 $n \rightarrow 0$

As a consequence of perspective foreshortening, z' is not linearly related to z:

near the far plane (f), $\Delta z \rightarrow \infty$ but must be covered by the same $\Delta z'$ as smaller Δz that are closer to n Redbook10

Losing Depth Precision

As a consequence of perspective foreshortening, z' is not linearly related to z: as z gets closer to f, the same amount of Δz ' must represent larger Δz

For example: let n = 10, f = 90,

$$\begin{array}{c} \text{for } z_1 = 10, z'_1 = 10 \\ \text{for } z_2 = 11, z'_2 = 18.182 \\ \cdots \\ \text{for } z_{k-1} = 89, z'_{k-1} = 89.888 \\ \text{for } z_k = 90, z'_k = 90 \end{array} \right] \qquad \begin{array}{c} \Delta z_1 = 1 \\ \Delta z'_1 = 8.182 \\ \Delta z_{k-1} = 1 \\ \Delta z'_{k-1} = 0.112 \end{array}$$

Losing Depth Precision

Implication of the non-linear mapping:

- information on the far plane loses precision
 ⇒ z-buffer punch through or z-fighting
- distances closer to origin are exaggerated

Effect is ameliorated if n set further from origin

z-Buffer Quantization

z-values stored as non-negative integers

Integers are represented in b (=16 or 32) bits, giving a range of B (= 2^b) values {0, 1, 2, ..., B-1}

Floating point z'-values are discretized into integer bins: $\Delta z' = (f-n)/B$, so for example for n = 10, f = 90, both $z_1 = 89$, $z'_1 = 100 - (900/89) = 89.888$ and $z_2 = 90$, $z'_2 = 100 - (900/90) = 90$ are both discretized to z' = 90

Moral of the story: choose *n* as far away from origin as possible and *f* as near as possible (to reduce $\Delta z'$)