
EECS	487:	Interactive	

Computer	Graphics	

Lecture	13:		
•  Planar	Geometric	Projections	

•  Orthographic	projection	

•  Perspective	projection	
•  Projections	in	OpenGL	

Planar	Geometric	Projections	

Planar	⩴	project	onto	a	plane	(vs.	planetarium,	e.g.)	

Geometric	⩴	projectors	are	straight	lines	

(vs.	curved	lines	in	cartography,	e.g.)	

Projection	⩴	map	from	n	to	n-1	dimensions	

	

Euclidean	geometry	describes	shapes	“as	they	are”	

• properties	of	objects	that	are	unchanged	
by	rigid	motions:	lengths,	angles,	parallel	lines	

Projective	geometry	describes	objects	“as	they	appear”	

•  lengths,	angles,	parallel	lines	become	

“distorted”	when	we	look	at	objects	

Projection	System		

Common	elements:	

• Center	of	Projection	(COP)	

(for	perspective	projection)/	

Direction	of	Projection	(DOP)	

(for	parallel	projection,	≈COP	at	∞)	

• Projection/view/picture/image	plane	(PP)	

• Projectors/sightlines	
	

	

	

	

	

	

Parallel																					Perspective	
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Multiview	

Orthographic	

• preserves	ratios,		
but	not	angles	(�	not	visible)	

• parallel	lines	remain	parallel	

�	is	considered	

an	affine	transform	

James07	

• projection	plane	parallel	to	one	
coordinate	plane	(project	onto	

plane	by	dropping	coordinate	

perpendicular	to	plane)	

• projection	direction	perpendicular	
to	projection	plane	

• good	for	exact	measurements	

(CAD,	architecture)	

Axonometric	Orthographic	

Axonometric:	

• projection	plane	is	not	parallel	to	any	coordinate	plane	
• projection	direction	perpendicular	to	projection	plane	
	

Isometric:	

• preserves	lengths	
along	3	principal	axes	
• principal	axes	make	

the	same	angle	with	

each	other	(120º)	

120º 

120º 

120º 

Parallel	Orthographic	Projections	

Are	we	done?	
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Yes,	but	we’ve	lost	depth	(z)	information,	can’t	do:	

• hidden	surface	removal	

•  lighting,	etc.	
Need	to	preserve	z	dimension!	

�	map	view	volume	to	canonical	view	volume	

Akenine-Möller	&	Haines	02	

Orthographic	Projection	

View	volume	defined	by	

left,	right,	bottom,	top,	near,	and	far	planes:	

	

	

	

	

Map	it	to	cvv:	

Shirley02	



Simple	case:	view	volume	axis-aligned	with	world	

coordinate	system	

•  the	view	volume	is	in	negative	z,	n > f
	

	

More	generally,	the	view	

volume	is	not	axis-aligned	

with	world	CS	(it	will	always	

be	axis-aligned	with	eye	CS):	

Orthographic	Projection	Setup	

Shirley02	

From	an	arbitrary	axis-aligned	

bounding	box	to	canonical	view	volume	

•  translate	and	scale:	

	

What	would	the	T	and	S	matrices	be?	

Orthographic	Projection	
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RTR3	

Orthographic	Projection	and	

Viewing	Transform	

From	an	arbitrary	viewing	

volume	to	canonical	view	volume	

•  translate	eye	to	origin	
•  transform	to	eye	coordinate	system	

•  apply	orthographic	projection	

2
r − l

0 0 − l + r
r − l

0 2
t − b

0 − b + t
t − b

0 0 2
n − f

− n + f
n − f

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Shirley02	

 

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
 

1 0 0 −ex
0 1 0 −ey
0 0 1 −ez
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  Mworld−>canonical =

  Meye→canonical   Mworld→eye

Perspective	Projection	

Objects	appear	smaller	as	distance	from	

center	of	projection	(eye	of	observer)	increases	

(perspective	foreshortening)	⇒	looks	more	realistic	

(human	eyes	naturally	see	things	in	perspective)	

Preserves:	

•  lines	(collinearity)	
•  incidence	
(“lies	on”,	intersects)	

• cross	ratio	

Does	not	always	preserve	parallel	lines:	

•  lines	parallel	to	projection	plane	remain	parallel	

•  lines	not	parallel	to	projection	plane	converge	to	a	single	
point	on	the	horizon	called	the	vanishing	point	(vp)	



The	Cross	Ratio	

For	the	4	sets	of	4 collinear	points	in	the	figure,	the	cross-ratio	for	
corresponding	points	has	the	same	value	(can	permute	the	point	

ordering)	

p3 − p1 p4 − p2
p3 − p2 p4 − p1

p1 − p3 p4 − p2
p1 − p2 p4 − p3

p2 − p1 p4 − p3
p4 − p1 p3 − p2p1 p2

p3

p4
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deMenthon	

Seitz08	

Classes	of	Perspective	Projection	

one-point:	projection	plane	parallel	to	one	
coordinate	plane	(�to	two	coordinate	axes,	

one	coordinate	axis	cuts	projection	plane)	

	

two-point:	projection	plane	parallel	to	one	

coordinate	axis	(two	coordinate	axes	cut	

projection	plane)	

James07	

Classes	of	Perspective	Projection	

three-point:	projection	plane	
not	parallel	to	any	coordinate	

axis	(three	coordinate	axes	cut	

projection	plane)	

Duell	

James07	Hulsey	

Projective	Geometry	in	2D 
Consider	lines	and	points	in	P
We	extend	to	3D	to	simplify	dealing	with	infinity	

•  origin	o	out	of	P,	at	a	distance	= 1	from	P

To	each	point	m	in	P	we	can	associate	a	single	ray	p = (x1, x2, x3)

To	each	line	l	in	P	we	can	associate	a	single	plane	(A, B, C)
•  the	equation	of	line	L	in	projective	geometry	is Ax1 + Bx2 + Cx3 = 0

deMenthon	

o

p = (x1, x2, x3)

x1x2

x3
(A, B, C ) = L

P
m

l



Homogeneous	Coordinates	

The	ray	p = (x1, x2, x3)	and (λx1, λx2, λx3)		
are	the	same	and	are	mapped	to	the	same	point	m	in	P
•  p	is	the	coordinate	vector	of	m,	

(x1, x2, x3)	its	homogeneous	coordinates

The	planes	(A, B, C) and	(λA, λB, λC)	are	the	same	

and	are	mapped	to	the	same	line	l	in	P
•  L	is	the	coordinate	vector	of	l, 

(A, B, C)	its	homogeneous	coordinates	

Point	p’	is	on	line	L	if	L•p’ = 0

deMenthon	

o

p = (x1, x2, x3)

x1x2

x3L = (A, B, C) 

P
m

l

(A, B, C)

p’

Perspective	Divide	

How	do	we	“land”	back	from	the	projective	world	to	

the	2D	Cartesian	world	of	the	plane?

•  for	point,	consider	the	intersection	of	ray	p = (λx1, λx2, λx3)	
with	the	plane	x3 = 1	�	λ = 1/x3,	m = (x1 / x3, x2 / x3, 1)

•  for	line,	intersection	of	plane	Ax1 + Bx2 + Cx3 = 0	with	the	

plane	x3 = 1	is	line	l = Ax1 + Bx2 + C = 0

Called	“perspective	divide”	

	

For	the	mathematically	

inclined,	or	studying	

computer	vision:	what’s	

the	geometric	interpretation	

of	x3 = 0?
deMenthon	

o

p = (x1, x2, x3)

x1x2

x3L = (A, B, C)

P
m

l

(A, B, C )

Projective	Geometry	

Two	lines	always	meet	at	a	

single	point,	and	two	points	

always	lie	on	a	single	line	

Projective	geometry	does	

not	differentiate	between	

parallel	and	non-parallel	lines	

Points	and	lines	are	dual	of	

each	other	

To	return	from	homogeneous	

coordinates	to	Cartesian	

coordinates,	divide	by	x3	(w)

deMenthon,	Durand08	

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = … 
(7, 1, 1) = (14, 2, 2) = … 
(4, 5, 1) = (8, 10, 2) = … 

3D	Projective	Geometry	

These	concepts	generalize	naturally	to	3D 
	

Homogeneous	coordinates	

•  projective	3D	points	have	four	coordinates:	p = (x, y, z, w)

Projective	transformations	

•  represented	by	4×4	matrices	

Seitz08	



Vanishing	Points	

What	happens	to	two	parallel	lines	that	are	not	

parallel	to	the	projection	plane?	

The	parametric	equation	for	

a	line	is:	

	

	

	

After	perspective	transform:	

At	the	limit,	with	t�∞,	we	get	

a	point!	[(vx/vz)d, (vy/vz)d, 1]T

	

Each	set	of	parallel	lines	

intersect	at	a	vanishing	point	
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Perspective	Projection	

Given	the	coordinates	of	the	orange	point	

find	the	coordinates	of	the	green	point	

	

	

	

	

Is	perspective	projection	simply:	

(x,	y,	z, 1)	�	(xd/z,	yd/z,	d, 1),	
then	map	to	screen	by	throwing	

away	the	z-coordinate:	(xd/z,	yd/z, 1)?	

tanθ = y '
d
= y
z

y ' = yd z
y

y’

d

z

view plane

e

y

z g
θ

Projecting	(x,	y,	z, 1)	�	(xd/z,	yd/z,	d, 1)	and	throwing	

away	d	does	not	preserve	the	depth	information	

	

Instead	want	P	such	that:	
	

	

	

	

	

	

Just	like	orthographic	projection,	we	need	to	map	

the	view	volume	to	a	CVV	instead	of	a	2D	plane	

Perspective	Projection	Matrix	
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perspective	

divide	

preserve	the	relative	

depth	information	of	

each	point	

Projection	System	Setup	

The	coordinate	system	

The	eye	(e)	
•  acts	as	the	focal	point	and	COP	

•  placed	at	the	origin	
•  looking	down	(g)	along	the	
negative	z-axis	(axis	of	projection)	

	

The	screen	

•  lies	in	the	projection	plane	
• ⟘	to	the	z-axis,�to	the	x-y	plane	
•  located	at	distance	d	from	the	eye	

•  d is	a.k.a.	the	focal	length	

(x, y, z, 1)
(x’, y’, d, 1)

e g

What	does	it	mean	for	w=1?	
What	does	it	mean	for	w>1?	
What	is	the	homogeneous	

coordinate	(HC)	when	

projecting	from	3D	to	2D?	



Perspective	Projection	View	Frustum	

View	volume	(frustum:	truncated	pyramid):	

• defined	by	(left,	right,	top,	bottom,	near,	far)	clipping	planes	

• near	(n)	and	far	( f )	distances	along	–z-axis,	
both	negative	numbers,	n > f

	

• nothing	nearer	than	n	will	be	drawn	

�  avoid	numerical	problems	during	

rendering,	such	as	divide	by	0
• nothing	further	than	f	will	be	drawn	

�  avoid	low	depth	precision	for	distant	objects	

	

To	preserve	relative	depth	information,	

we	must	map	the	frustum	to	a	CVV	instead	of	a	2D	plane	

View volume

From	Frustum	to	CVV	

perspective	

projection,	

including	

perspective	

divide	

RTR3	

orthographic	

projection	

Want	projection	matrix	P	such	that:	

What	should	P	be?	
• we’re	projecting	from	3D	to	2D (not	4D	to	3D),	

use	the	HC	of	the	projected	point	to	store	its	depth	

info	(i.e.,	the	“real”	HC	in	3D	to	2D	projection)	

• first	attempt:	

	

	

	

	

	

Any	problem?	

Perspective	Projection	Matrix	
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Second	attempt:	for	a	more	generic	matrix,	

grab	the	depth	info	from	the	point	itself:	

		

	

	

	

	

Are	we	done?	

• the	projected	x-,	y-,	and	HC	are	correct	already,	but	after	
perspective	divide,	all	depths	mapped	to	d!	
• 3rd	row	of	matrix	must	be	tweaked	to	preserve	relative	

depth	info	(z’)	

! 
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Perspective	Projection	Matrix	



Perspective	Projection	Matrix	

Let	d = n

	

The	1st	and	2nd	rows	of	P	are	correct	

already,	for	the	3rd	row	(third	attempt):	

• the	computation	of	z’	does	not	rely	on	x	and	y,	
set	the	first	two	numbers	of	the	row	to	0
• we	can	use	the	remaining	two	numbers	to	

compute	z’,	let	them	be	unknowns	a	and	b	for	now:	
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Frustum 	Rectangular	box	

! 

Pp =

n 0 0 0
0 n 0 0
0 0 a b
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

xn
yn

az + b
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

after
perspective

divide

⎯ →⎯⎯⎯

x n z
yn z
a + b z
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

For	the	3rd	row	of	P:	
• want	a	and	b	such	that:	

• or,	for	z=n, a+b/z = n	and	for	z=f, a+b/z = f

Perspective	Projection	Matrix	
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for!z = n : !a + b n = n, !a = n − b n
for!z = f : !a + b f = f ,

substituting!for!a:! n − b n( ) + b f = f
b n − f( ) = f − n( )nf , !b = −nf

substituting!for!b:!a = n − −nf( ) n , !a = n + f

nf

Perspective	Divide	

Then	divide	by	the	homogenous	coordinate	

�	squeezing	the	frustum	into	a	rectangular	box	

Shirley02	

Note	how	n/z	
conveniently	cancels	

the	negative	signs	out	
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Perspective	Foreshortening	

What	is	the	effect	of	perspective	divide	

on	the	shape	of	objects?	

	

	

	

	

	

	

	

	

�	After	perspective	divide,	an	object	further	away	

appears	to	be	smaller	than	an	equal-size	object	nearby	
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From	Frustum	to	CVV	

Now	reposition	and	scale	the	rectangular	box	

	

	

	

	

	

	

Assume	viewing	transform	has	been	

done,	so	after	perspective	divide	

(not	shown)	we’re	only	dealing	with	

axis-aligned	viewing	volume	

Pp = STP = PoP =

2
r − l

0 0 − r + l
r − l

0 2
t − b

0 − t + b
t − b

0 0 2
n − f

− n + f
n − f

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

n 0 0 0
0 n 0 0
0 0 n + f −nf
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

2n
r − l

0 l + r
l − r

0

0 2n
t − b

b + t
b − t

0

0 0 n + f
n − f

2nf
f − n

0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

See	also	http://www.songho.ca/opengl/gl_projectionmatrix.html	

Recall	that	after	perspective	divide	we	have:	

	

As	a	consequence	of	perspective	foreshortening,	

z’	is	not	linearly	related	to	z:	

Losing	Depth	Precision	

 

x '
y '
z '
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

nx z
ny z

n + f − fn
z

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

!

z ' = n + f − nf
z

Δz ' ≈ nfΔz
z2

; !Δz ≈ z2

fn
Δz '

max !Δz !is!when!z = f

At!z = f ,!Δz = f
n
Δz ', !as!n→ 0,

near!the!far!plane!(f ),!Δz→∞!but!must!be!covered!by

the!same!Δz ' !as!smaller!Δz !that!are!closer!to!n
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n → 0

As	a	consequence	of	perspective	foreshortening,	

z’	is	not	linearly	related	to	z:	as	z	gets	closer	to	f,	
the	same	amount	of	Δz’	must	represent	larger	Δz

For	example:	let	n = 10, f = 90,		
for	z1 = 10, z’1 = 10 Δz1 = 1	
for	z2 = 11, z’2 = 18.182 Δz’1= 8.182	
.	.	.	

for	zk-1 = 89, z’k-1 = 89.888 Δzk-1 = 1	
for	zk = 90, z’k = 90 Δz’k-1= 0.112

Losing	Depth	Precision	

Implication	of	the	non-linear	mapping:	

•  information	on	the	far	plane	loses	precision	

�	z-buffer	punch	through	or	z-fighting	
•  distances	closer	to	origin	are	exaggerated	

Effect	is	ameliorated	if	n	set	further	from	origin	

Losing	Depth	Precision	

far=100

RTR3	

Akeley07	

Δz1 Δz2

Δz’1, n

Δz’2, f 

Δz’1, n

Δz’2, f



z-Buffer	Quantization	

z-values	stored	as	non-negative	integers	

Integers	are	represented	in	b	(=16	or	32)	bits,	
giving	a	range	of	B	(= 2b)	values	{0, 1, 2, . . . , B-1}

Floating	point	z’-values	are	discretized	into	integer	bins:	
Δz’	= (f−n)/B,	so	for	example	for	n = 10,	f = 90,	both	
z1 = 89,		z’1 = 100−(900/89) = 89.888 and	
z2 = 90, z’2 = 100−(900/90) = 90	
are	both	discretized	to	z’ = 90

Moral	of	the	story:	choose	n	as	far	away	from	origin	as	

possible	and	f	as	near	as	possible	(to	reduce	Δz’)	


