EECS 487: Interactive Computer Graphics

Lecture 13:

- Planar Geometric Projections
- Orthographic projection
- Perspective projection
- Projections in OpenGL

Planar Geometric Projections

Planar ::= project onto a plane (vs. planetarium, e.g.)
Geometric ::= projectors are straight lines
(vs. curved lines in cartography, e.g.)
Projection :== map from n to $n-1$ dimensions
Euclidean geometry describes shapes "as they are"

- properties of objects that are unchanged
by rigid motions: lengths, angles, parallel lines
Projective geometry describes objects "as they appear"
- lengths, angles, parallel lines become
"distorted" when we look at objects

Taxonomy of
Planar Geometric Projections

Multiview Orthographic

- projection plane parallel to one coordinate plane (project onto plane by dropping coordinate perpendicular to plane)
- projection direction perpendicular to projection plane
- good for exact measurements (CAD, architecture)

Parallel Orthographic Projections

Yes, but we've lost depth (z) information, can't do:

- hidden surface removal
- lighting, etc.

Need to preserve z dimension!
\Rightarrow map view volume to canonical view volume

Axonometric Orthographic

Axonometric:

- projection plane is not parallel to any coordinate plane
- projection direction perpendicular to projection plane

Isometric:

- preserves lengths along 3 principal axes
- principal axes make the same angle with each other (120°)

Orthographic Projection

View volume defined by
left, right, bottom, top, near, and far planes:

Map it to cvv:

Orthographic Projection Setup

Simple case: view volume axis-aligned with world coordinate system

- the view volume is in negative $z, n>f$

More generally, the view volume is not axis-aligned with world CS (it will always be axis-aligned with eye (S):

Orthographic Projection and Viewing Transform

Orthographic Projection

From an arbitrary axis-aligned bounding box to canonical view volume

- translate and scale:

What would the \mathbf{T} and \mathbf{S} matrices be?
$\mathbf{P}_{o}=\mathbf{S T}=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & -\frac{l+r}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{b+t}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right] \mathbf{S}=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \mathbf{T}=\left[\begin{array}{cccc}1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{b+t}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1\end{array}\right]$

Perspective Projection

Objects appear smaller as distance from center of projection (eye of observer) increases (perspective foreshortening) \Rightarrow looks more realistic (human eyes naturally see things in perspective)

Preserves:

- lines (collinearity)
- incidence ("lies on", intersects)

- cross ratio

Does not always preserve parallel lines:

- lines parallel to projection plane remain parallel
- lines not parallel to projection plane converge to a single point on the horizon called the vanishing point (vp)

The Cross Ratio

For the 4 sets of 4 collinear points in the figure, the cross-ratio for corresponding points has the same value (can permute the point ordering)

deMenthon
Seitzo8

Classes of Perspective Projection

Classes of Perspective Projection

one-point: projection plane parallel to one coordinate plane (// to two coordinate axes, one coordinate axis cuts projection plane)
two-point: projection plane parallel to one coordinate axis (two coordinate axes cut projection plane)

Projective Geometry in 2D

Consider lines and points in \mathbf{P}
We extend to 3D to simplify dealing with infinity

- origin $\mathbf{0}$ out of \mathbf{P}, at a distance $=1$ from \mathbf{P}

To each point \mathbf{m} in \mathbf{P} we can associate a single ray $\mathbf{p}=\left(x_{1}, x_{2}, x_{3}\right)$
To each line \mathbf{I} in \mathbf{P} we can associate a single plane (A, B, C)

- the equation of line \mathbf{L} in projective geometry is $A x_{1}+B x_{2}+C x_{3}=0$

Homogeneous Coordinates

The ray $\mathbf{p}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)$
are the same and are mapped to the same point \mathbf{m} in \mathbf{P}

- \mathbf{p} is the coordinate vector of \mathbf{m}
(x_{1}, x_{2}, x_{3}) its homogeneous coordinates
The planes (A, B, C) and $(\lambda A, \lambda B, \lambda C)$ are the same and are mapped to the same line \mathbf{I} in \mathbf{P}
- \mathbf{L} is the coordinate vector of \mathbf{I},

Projective Geometry

Two lines always meet at a single point, and two points always lie on a single line

Projective geometry does not differentiate between parallel and non-parallel lines

Points and lines are dual of each other

To return from homogeneous coordinates to Cartesian coordinates, divide by $x_{3}(w)$

Perspective Divide

How do we "land" back from the projective world to the 2D Cartesian world of the plane?

- for point, consider the intersection of ray $\mathbf{p}=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)$ with the plane $x_{3}=1 \Rightarrow \lambda=1 / x_{3}, \mathbf{m}=\left(x_{1} / x_{3}, x_{2} / x_{3}, 1\right)$
- for line, intersection of plane $A x_{1}+B x_{2}+C x_{3}=0$ with the plane $x_{3}=1$ is line $\mathbf{I}=A x_{1}+B x_{2}+C=0$

Called "perspective divide"

For the mathematically inclined, or studying computer vision: what's the geometric interpretation of $x_{3}=0$?

3D Projective Geometry

These concepts generalize naturally to 3D

Homogeneous coordinates

- projective 3D points have four coordinates: $\mathbf{p}=(x, y, z, w)$

Projective transformations

- represented by 4×4 matrices

Vanishing Points

What happens to two parallel lines that are not parallel to the projection plane? The parametric equation for a line is:

$$
\mathbf{l}=\mathbf{p}+t \mathbf{v}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]+t\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]
$$

After perspective transform:

At the limit, with $t \rightarrow \infty$, we get a point! $\left[\left(v_{x} / v_{z}\right) d,\left(v_{y} / v_{z}\right) d, 1\right]^{T}$

Each set of parallel lines intersect at a vanishing point

Perspective Projection

Given the coordinates of the orange point find the coordinates of the green point

$$
\begin{gathered}
\tan \theta=\frac{y^{\prime}}{d}=\frac{y}{z} \\
y^{\prime}=y d / z
\end{gathered}
$$

Is perspective projection simply:
$(x, y, z, 1) \rightarrow(x d / z, y d / z, d, 1)$, then map to screen by throwing
 away the z-coordinate: $(x d / z, y d / z, 1)$?

Projection System Setưp

The coordinate system
The eye (e)

- acts as the focal point and COP
- placed at the origin
- looking down (g) along the negative z-axis (axis of projection)

The screen

- lies in the projection plane
- \perp to the z-axis, // to the $x-y$ plane
- located at distance d from the eye
- d is a.k.a. the focal length

What does it mean for $w=1$?
What does it mean for $w>1$?
What is the homogeneous
coordinate (HC) when projecting from 3D to 2D?

Perspective Projection View Frustum

View volume (frustum: truncated pyramid):

- defined by (left, right, top, bottom, near, far) clipping planes
- near (n) and far (f) distances along -z-axis, both negative numbers, $n>f$
- nothing nearer than n will be drawn
\rightarrow avoid numerical problems during rendering, such as divide by 0
- nothing further than f will be drawn
\rightarrow avoid low depth precision for distant objects

To preserve relative depth information, we must map the frustum to a CVV instead of a 2D plane

Perspective Projection Matrix

Want projection matrix \mathbf{P} such that: $\mathbf{P}\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}x d / z \\ y d / z \\ z \\ 1\end{array}\right], ~ t h a t ~ s h o u l d ~$
\mathbf{P} be?

- we're projecting from 3D to 2D (not 4D to 3D)
use the HC of the projected point to store its depth
info (i.e., the "real" HC in 3D to 2D projection)
- first attempt:

$$
\mathbf{P p}=\left[\begin{array}{llll}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & 0 & z
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x d \\
y d \\
z d \\
z
\end{array}\right] \xrightarrow[\substack{\text { perspertive } \\
\text { divide }}]{\text { after }}\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

Any problem?

From Frustum to CVV

Perspective Projection Matrix

Second attempt: for a more generic matrix, grab the depth info from the point itself:

$$
\mathbf{P p}=\left[\begin{array}{llll}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x d \\
y d \\
z d \\
z
\end{array}\right] \xrightarrow[\substack{\text { perspepetive } \\
\text { divide }}]{\text { after }}\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

Are we done?

- the projected $x-, y$-, and HC are correct already, but after perspective divide, all depths mapped to d !
- $3^{\text {rd }}$ row of matrix must be tweaked to preserve relative depth info (z^{\prime})

Perspective Projection Matrix

Frustum Rectangular box
Let $d=n$

The $1^{\text {st }}$ and $2^{\text {nd }}$ rows of P are correct already, for the $3^{\text {rd }}$ row (third attempt):

- the computation of z ' does not rely on x and y_{1}
set the first two numbers of the row to 0
- we can use the remaining two numbers to compute z ', let them be unknowns a and b for now:

$$
\mathbf{P p}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x n \\
y n \\
a z+b \\
z
\end{array}\right] \xrightarrow[\substack{\text { perspective } \\
\text { divide }}]{\text { after }}\left[\begin{array}{c}
x n / z \\
y n / z \\
a+b / z \\
1
\end{array}\right]
$$

Perspective Divide

Then divide by the homogenous coordinate \Rightarrow squeezing the frustum into a rectangular box $\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -n f \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}n x \\ n y \\ (n+f) z-n f \\ z\end{array}\right] \xrightarrow[\text { divide }]{\text { perspecive }}\left[\begin{array}{c}x n / z \\ y n / z \\ n+f-\frac{n f}{z} \\ 1\end{array}\right]$

Note how n / z conveniently cancels the negative signs out

Perspective Projection Matrix

For the $3^{\text {rd }}$ row of \mathbf{P} :

- want a and b such that:

- or, for $z=n, a+b / z=n$ and for $z=f, a+b / z=f$
for $z=n: a+b / n=n, a=n-b / n$
for $z=f: a+b / f=f$,
substituting for $(a:(n-b / n)+b / f=f) n f$

$$
b(n-f)=(f-n) n f, b=-n f
$$

substituting for $b: a=n-(-n f) / n, a=n+f$

Perspective Foreshortening

What is the effect of perspective divide on the shape of objects?

\Rightarrow After perspective divide, an object further away appears to be smaller than an equal-size object nearby

From Frustum to CVV

Now reposition and scale the rectangular box
$\mathbf{P}_{p}=\mathbf{S T P}=\mathbf{P}_{o} \mathbf{P}=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -n f \\ 0 & 0 & 1 & 0\end{array}\right]$
Assume viewing transform has been done, so after perspective divide (not shown) we're only dealing with axis-aligned viewing volume

Losing Depth Precision

As a consequence of perspective foreshortening,
z^{\prime} is not linearly related to z : as z gets closer to f,
the same amount of Δz^{\prime} must represent larger Δz
For example: let $n=10, f=90$,

$$
\begin{array}{lll}
\text { for } z_{1}=10, z_{1}^{\prime}=10 & \Delta z_{1}=1 \\
\text { for } z_{2}=11, z_{2}^{\prime}=18.182 \\
\ldots & \Delta z_{1}=8.182 \\
\text { for } z_{k-1}=89, z_{k-1}^{\prime}=89.888 \\
\text { for } z_{k}=90, z_{k}^{\prime}=90
\end{array} \quad \begin{aligned}
& \Delta z_{k-1}=1 \\
& \Delta z_{k-1}^{\prime}=0.112
\end{aligned}
$$

Losing Depth Precision

Recall that after perspective divide we have:

As a consequence of perspective foreshortening,
$\left.\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{c}n x / z \\ n y / z \\ n+f-\frac{f n}{z} \\ 1\end{array}\right]$ z^{\prime} is not linearly related to z :
$z^{\prime}=n+f-\frac{n f}{z}$
$\Delta z^{\prime} \approx \frac{n f \Delta z}{z^{2}} ; \Delta z \approx \frac{z^{2}}{f n} \Delta z^{\prime}$
$\max \Delta z$ is when $z=f$
At $z=f, \Delta z=\frac{f}{n} \Delta z^{\prime}$, as $n \rightarrow 0$,

near the far plane $(f), \Delta z \rightarrow \infty$ but must be covered by
the same Δz^{\prime} as smaller Δz that are closer to n

Losing Depth Precision

Implication of the non-linear mapping:

- information on the far plane loses precision $\Rightarrow z$-buffer punch through or z-fighting
- distances closer to origin are exaggerated

Effect is ameliorated if n set further from origin

z-Buffer Quantization

z-values stored as non-negative integers
Integers are represented in b ($=16$ or 32) bits, giving a range of $B\left(=2^{b}\right)$ values $\{0,1,2, \ldots, B-1\}$
Floating point z^{\prime}-values are discretized into integer bins: $\Delta z^{\prime}=(f-n) / B$, so for example for $n=10, f=90$, both
$z_{1}=89, z_{1}^{\prime}=100-(900 / 89)=89.888$ and
$z_{2}=90, z_{2}^{\prime}=100-(900 / 90)=90$
are both discretized to $z^{\prime}=90$
Moral of the story: choose n as far away from origin as possible and f as near as possible (to reduce Δz^{\prime})

