EECS 487: Interactive
Computer Graphics

Lecture 9:
* Lectures 1-8 recap
* 2D Modeling Transforms
 Affine Transforms

Where are We Headed Next?

Image synthesis is just like taking a picture

Application provides:
- scene description: objects, lights, camera

- different coordinate systems used:
+ model/object, world, eye/camera

Modeling Transform (M)

« change the position, orientation,
deformation of objects
to compose scene

world coordinates

model coordinates

Gilliesog

Math Tools

Mathematical tools in CG:
1. implicit line equation
half-spaces and infout determination

“Computer graphics:
Mathematics made visible.”
— James ’

N

3. parametric/barycentric coordinates
and interpolation

4. dot product and projection and intersection

5. cross product to compute area and orientation

6. implicit plane equation

7. sampling and filtering (averaging) a N
' “Much of graphicsisjust |

Along the way we learned: translating math directly

1. line rasterization and coloring into code. The cleaner the

2. triangle rasterization and coloring math,.the cleaner the
3. clipping and visibility determination resulting code.”
4. anti-aliasing and compositing ‘ — Shirley |

AN

The non-programmable parts of the pipeline

Model and View Transforms OAO

model coordinates

camera
direction

«

K s field of
K view

Viewing Transform (V)

« positioning the camera and its
orientation

» where the user views the world
from and how much of the
world is visible

W

view volume

x

Z

world coordinates
camera

In OpenGL 2.1, Model and e
Viewing transforms encoded v
into a single matrix (VM) -
* GL MODELVIEW MATRIX ~ O%
Z

T

eye coordinates

Projection and Viewport Transforms

Projection Transform: Application
« framing the shot and zooming the lens

| Vertex Processing |

Primitive Processing

| Rasterization |

l

Focal | Fragment Processing |
aint "O"

=

Viewport Transform:
- enlarging or reducing the size of the print Display

General (Free-form)
Transformation

Does not preserve straight lines
Computationally involved
Not as pervasively used

Sederberg & Parry 86

Not covered. . ..

¥, , v,
6 ¥=—=y+z+l s

5 %

4 ’ Yy =2

y===-2""+3

3 2 3 2

1 1 G

0| 0! N\
01 2 3 4 35 x 2 3 4 5 x

Merrello8

What is a Transformation?

Geometric transformations map points in one
space to points in another: p’ = f (p)

Transformations provide a mechanism for
manipulating geometric models and are essential

pieces of graphics systems
+ e.g., OpenGL/Direct3D and PostScript use them extensively

Transformations are used to:
« position objects in a scene (modeling)
« change the shape of objects
« create multiple copies of objects
« project for virtual cameras
+ create animations
. etc.

Transformations We Cover

... and characteristics they preserve:

Rigid Body/Euclidean:
- angles, lengths, areas

Projective

Linear:
+ linear combination
Affine:

- parallel lines, length ratios, area ratios

Similitudes/similarity:
« angles, length ratios

Perspective A

NO projective
translation|
_r

Ae -

x
DeMenthon, Durando8

Euclidean

Rigid-Body/Euclidean Transforms

Preserves: Rigid Body
* absolute distances
* angles (size and sign)

Identity
Rotation

Translation: ,
r=z+t, 9" LZ; o Lzs
ya :y + ty 765 76

Rotation about the origin:
T =2 cos p—ysin y
Y =zsin ¢ +ycos ¢ ,"I.';

Shirleyo2
Durando8

How About Shear? |3
Non-Primitive
Shear: {”l}
r=x+h,y e
y=huzx+y

Shirleyo2

Linear Transforms

Linear

Scaling:
r=5,T Identi.ty Scaling
Yy =s Rotation

uniform/isotropic: s, = s, non-uniform/anisotropic/
v differential: s = s,
11 1
F10

8 4 i
7465 ¥
X

y

How About Reflection?
Non-Primitive
Reflection (even# flips): proper rotation I-
.19
Reflection (odd# flips):
scalingwiths, =-lors,=-1 y
’ e TN ;:"]z-‘n!
B
%ll'li

Matrix

Representation

Rotation about the origin:

X = TCos p—ysin ¢
Yy = zsin ¢ 4+ ycos ¢

Scaling:
r=s,T

V' =1s,y

More generally:
¥ =azx+ by
Vv =dx+ ey

Linear

Identity = Scaling
Rotation Shear
Reflection

A 2D linear transform can be
represented by a 2 x2 matrix:

:I:'_aba:
y' d e ||y

p'=Mp
To apply transformation to a point,
multiply the column vector
representing the point by the matrix

Durando8

Linear Transform Matrices

Shear: z'=1z+h,y
y'=hz+ly

Shear transform in z:

FHa

p'=H_ (h)p

Shear transformin y:

M

p'=H,(h)p

|

T
y

z
y

|
|

Shear ::= an action or stress resulting
from applied forces that causes, or
tends to cause two contiguous parts
of a body to slide relatively to each
other

y

Shirleyo2

Linear Transform Matrices

Scaling: z'=s,2+0y

y'=0z+sy

' s, O
M)

p'=S(s,.s,)p

y

8 4 05 0
s 0 05

8 4, 05 0
7465

015}

@'@

Reflection: flip vectors about an axis as if reflected in a mirror

Reflection about z

1R
o 2
9 3
8 4 10
765 0 -1

Reflection about y

y

1

fio 2

98 43 [w o}
765 01

T§n
s oN
3 ?

& 8,
2%

Linear Transform Matrices

Rotation about the origin:

N

To rotate p by ¢:
2’ =rcos(f+p)=
Yy =rsin(@+¢)=
2’ =1cosp— ysinp
{ y' =uzsinp+ ycosy

' | cosp
"] sing

p'=R(p,0)

|

< 8

podl Y

R(%.0)

Shirleyo2

&
10
9 3

8 4,
765

COSp — singp

sing + cosp

R(Z

707 -.707
707 707
X

(x,y)
per | AP

r

@,y

/0

,0)

o
Rotation about the origin

7,
% ' %
866 5 A)
-5 866 s 2)

N/

Shirleyo2

What Makes a Transformation Linear?

Preserves linear combination: transformation of a
linear combination is the same as the linear
combination of the transformed parts

« vector addition:
L(p + q) = L(p) + L(q)

2p

L(2p)
« scalar multiplication:
L(ap) = alL(p) P

2L(p)

Durando8

Affine Transforms

Preserves:
* (straight) lines

H _
* parallel lines Q

« affine combination

= preserve distance ratios
(midpoints map to midpoints)

Curlesso8
Durando8

What Makes a Transformation Linear?

Preserves linear combination:
« vector addition:

L(p + q) = L(p) + L(q)
« scalar multiplication:

L(ap) = aL(p)
= aline remains a line:

Llap + (1-a)(q - p)) = aL(p) + (1-a)(L(q) — L(p))

To linear transform a polygon, it is sufficient to
transform its vertices!

Why is translation not a linear transform?

Linear

Identity = Scaling
Rotation Shear
Reflection

T(ap) =ap +t & al(p) =a(p + t) = ap + at

Durando8

Matrix Representation
of Affine Transforms

Translation: In general, an affine transform

can be represented as:

r'=x+t, r'=ar+by+t,

y'=y+i, y'=dr+ey+i,

. t ' 1,

:B' _| =z 4 117' _| a b T 4

y y I, y d e y ,

p'=p+t p'=Mp+t=A(p)

linear plus
transforms translation

Affine Transforms Composition of Transformations:

Is translation an affine transform? Linear Tra nsfo rms
Does translation preserve affine combination? Linear transforms are associative (A(BC) = (AB)C)

n f\ Linear transforms are closed under composition
Letp = Zaipi and‘\\% a; :/L‘ = composition of linear transforms can be represented as

i=0 = multiplication of the transformation matrices, e.g., rotate
Affine transform:

then scale:
'=8(s,,s,)R(p,0)p
A =M + t p 25y
(p) P — [x } { s, 0 M cosp —sing :l[x }

v : : ™~ YT i X
(= barycentric coordinates are Mp) 4 0 s || sing cosp]| ¥

preserved — [z' }_ 5,C08p —s,singp [o :l
= to affine transform a polygon, an. IWE) Y s,sing s cosp || ¥

it is still sufficient to transform |« =0 ipi/ e

)) — Why is being closed under composition important?

_ onlyits vertices) =Mp+t=A(p)

— « why do we want to combine/compose transforms?

Composition of Linear Transforms
Matrix multiplication applied right to left

Composition of Affine Transforms?

In general, an affine transform

Matrix multiplications are generally not commutative: can be represented as: , 7

) y t'=ar+by+i, /' We would like to use only\‘
though the following are: 90‘]2_'23 ;o"'f_‘§ y'=dr+ey+t, matrices to represent all
SS, RR (2D only), (s e s affine transforms:
SR (isotropic S only) vl a b | @ g \ p=Mp

< v Yy d e y 1

? - p'=Mp+t=A(p)
. Not in p’ = Mp form!

' ' => combining transformations is no
éb éﬁ longer a simple matrix multiplication!

Shirleyo2

