EECS 487: Interactive
Computer Graphics

Lecture 7:
« Occlusion culling/hidden surface removal

Hidden Surface Elimination

Algorithms are usually classified by whether they
work on:
- object space:
« painter’s algorithm
+ BSP tree
+ image space:
- z-buffer

There are others, but z-buffer, BSP tree, and ray
casting are most commonly used in practice

Funkhousero6

Hidden Surface Elimination

A scene composed of 3D objects may have some
of them obscuring all or parts of the others

Draw only objects closest to the viewing position
and eliminate those obscured

A.k.a. hidden surface removal or visible surface
detection or occlusion culling

Changing viewpoint can change the obscuring
relationship

Benefit?

Painter’s Algorithm

One of the earliest algorithms forimage
generation (1969-1972)

It solves the visible object problem by
painting, or filling, with opaque paint, where
closer objects are painted over farther ones

sort objects by z
for all objects {
for all covered pixels(x,y)
paint

}

Problem:
does not handle cyclic ordering

Akeleyo7

Binary Space Partitioning Implicit 3D Plane Egn =«

Consider a plane through points a, b, and ¢ é

Trade off time-and-space intensive preprocessing The normal of the planeis: n= (b —a) x (¢ —a)
against linear display step A point p is on the plane if n(p —a) = 0

Implicit plane equation, for a on plane, is thus: f(p) =n-(p —a) =0

Very efficient visibility culling method for a static set of polygons

Well suited for applications where viewpoint changes,

but objects do not, e.g., 3D games such as Doom Think of (p — a) - n as projecting (p — a) onto n:
* f(p) > 0if pis on the same side asn
Main idea: a polygon 4 is painted in correct order if: F(p) < 0if pis onthe other side of

* polygons on the far side of 4 are painted first
* Ais painted next
* polygons on near side of 4 are painted last
Build a tree to recursively partition the space and group polygons x
f@=n-@-a)=n-p-na=[4 5 c| y|-[aB]y
Two types: z z,
* Polygon-aligned BSP
* Axis-aligned BSP

Letp=(zy,2),n=(4, B, C),
the implicit plane equation can also be expressed as:

x
a

f(x,y,2) = Ax+By+Cz+D =0, where D=-Ax, — By —Cz =-n-a

Polygon-aligned BSP Polygon-aligned BSP Tree
(3)

Using the BSP:
recurse on the far side (from eye) child
draw parent
recurse on the near side (to eye) child

Use plane that is coplanar with each triangle as scene
separator

First assume no triangle crosses such planes

BSP idea is simply: render (node, eye) 1
if (node==0) return;
if (node.f(eye) > 0) { // in front
render (node.child back, eye);
draw (node.T) ;
render (node.child front, eye);

* let e be the eye-point and f7, (p) = 0 be the implicit
plane equation for the plane coplanar with T

 if (fr, (&) > 0) {

[l eye is closer to T, than to T, in the plane } else {
draw T2 _ ;igifiégzd; ?hildifront, eye) ;
draw T + render (noae . 'child back, eye);
} else { \b } N
draw Tl e: eye }
draw T,) O
} e (@0

” 3)(2) (1) 12(5a)5a3(4)4 (5b) 5b () means visit (call render)

Merrello8

BSP Tree Construction

Add all the triangles in any order
Recursive algorithm:

Polygon-aligned BSP

struct node t {
triangle_t T;
plane_egn f(point p);
node_t *child back, *child_front; What if a triangle does cross the plane defined by another
void add(triangle_t *new_T); // add a child recursively

} triangle?
node_t::add(triangle_ t *new T) {
if (self.f(new T[0])>0 && self.f(new T[1])>0 && self.f(new T[2])>0)
if (self.child front == 0) // no children in front
self.child front = node_t (new T);
else
self.child front-add(new T);
else if (all negative)
el;e
split and add triangle(new T);
}
BSP Tree Construction :
. a BSP Tree Construction
Split triangle T5: v
- one of T,'s vertices will be on the o Caveats when splitting triangle T:
o , p(t 0
opp05|te. side of Tl s plane to the others - use implicit equation of plane to check K 5
- find the intersections where the plane which one of T'’s vertices is on the ~
i ? il o
cuts the triangle (how?) q opposite side to the others p
p(1)=K+1(m-Kk) ! __ .
. , o « must maintain vertex ordering to
Ifp() ison T}'s plane, <
Kk = preserve normal!
fora any vertexof T, A~
n the plane's normal: o) * then » be careful not to create a sliver of a !
fp)=n-p(r)-n-a=0 tes.sellate triangle: if dlstz.an-ce.: gfm from plane is |
n-(k+(m-Kk)-n-a=0 m T2.|nto|3 <¢ treatmasifitisin the plane
triangles . : .
_na-nk q 9 - if one or more vertices are in the plane,
n-(m-k) no need to cut triangle
Similarly forq =1+¢,(m~-1) 1

Merrello8

BSP Tree Performance

Add triangles to the BSP tree in
any order

- tree shape doesn't effect performance
for hidden surface elimination (why?)

« but it is useful to keep BSP balanced for
other uses, e.g., collision detection

- different ordering of triangle additions
to the tree result in more (or less) tree
nodes

« one heuristics: in each round, pick 5 triangles
at random, choose the plane with minimal
triangle crossings as the separator

Axis-Aligned BSP Tree: Build

[:::]BDQ%E\

Plane 1a o Plane 1b \\
— o

5

B
-

A C

Shirleyo2

Each internal node holds a divider plane

Leaves hold geometry

A.k.a., kd-tree

Tomas Akenine-Méller © 2002

Axis-Aligned BSP Tree: Idea

Splitting plane aligned to X, y, or z axis

Minimal Split alon
box [:'] ® Q pIF;rTe ’ [:']
- y -

Splitalong f:] 8 (\ Splitalong fl::]
plane \} plane
- y =

VY N
A

Tomas Akenine-Méller © 2002

Axis-aligned BSP-Tree: Usage

Test the planes against the point of view
Test recursively from root
To sort front to back, visit near side first

* being able to do so and not display invisible back polygons
was a major innovation in Quake

(o)
la lb\\ n c JZ'
)
A 4 » FrdB A

* does not give exact sorting when there are multiple
objects per node, or when an object spans multiple nodes

Tomas Akenine-Méller © 2002

Hidden Surface Elimination

Algorithms are usually classified by whether

they work on:

+ image space:
- z-buffer

T

LT

22
28

T

L33
e

There are others, but z-buffer, BSP tree, and
ray casting are most commonly used in

practice

z;Buffer Render

Lozano&Popovico1

2 4 6 8 -10-12 -14

6 -18 -20-22

NEEEY,

“ =

Riesenfeld

z;Buffer Render

z-Buffer or Depth Buffer

One of the simplest of all image-based

hidden-surface elemination algorithms (Ed Catmull, 1974)
« originally considered too expensive
« now commonly implemented in hardware
using fast memory (cheap now) and fast GPU
- geometry independent: hidden surface removal one fragment at a time!

Algorithm:

- at each pixel, store the z-value of the closest triangle rasterized so far

+ change the pixel’s color (and depth value) only if a new z-value is closer to
the viewer than the stored value g

setpixel (int i, j, RGB ¢, real z) {
if (z < z buffer(i,j)){
screen(i,j) = c;
z_buffer(i,j) = z;
}
}

2 4 -6 -8 -10-12 -14- 61-18 -20-22
2
\
18
17|
15
14
l =

Riesenfeld

z-Values z-Buffer in OpenGL

Computation:
- use barycentric coordinates to interpolate depth value of each glutInitDisplayMode (GLUT DEPTH | . . .);
pixel from those of the vertices glClear (GL DEPTH BUFFER BIT | . . .);
Depth-value storage: glEnable (GL DEPTH TEST);
+ as non-negative integers
- integers are represented in b (=16 or 32) bits,
giving a limited range of B (= 2%) values {0, 1, 2, . .., B-1}

// get viewing position and draw objects

e Recall that OpenGL is a state machine
z-Buffer visualization:

a Boolean state settings can be turned on and off with
‘ glEnable () andglDisable ()

Anything that can be set can be queried using
glGet ()

