

EECS 487: Interactive Computer Graphics

Lecture 6:

- Triangle rasterization
- Polygon clipping

Polygon Rasterization

Takes shapes like triangles and determines which pixels to set

- 1. Polygon scan-conversion
 - sweep the polygon by scan line, set the pixels whose center is inside the polygon for each scan line
- 2. Polygon fill
 - select a pixel inside the polygon
 - grow outward until the whole polygon is filled

We'll only look at scan-conversion

Merrello8

Odd-Parity Polygon Rasterization

Want:

What's Inside?

Tests for what's inside:

- odd-parity rule: odd-crossing means inside
- non-exterior rule: a point is inside if every ray to infinity intersects the polygon
- winding rule: inside if walking along the edges encircles a point ≥ 1 times which is right? rather arbitrary...

How to ensure correct scan conversion of a polygon?

Triangle Rasterization

Two questions:

- which pixel to set?
- what color to set each pixel to?

How would you rasterize a triangle?

- 1. Edge-walking
- 2. Edge-equation
- 3. Barycentric-coordinate based

polygon edge

Edge Walking

Idea:

- scan top to bottom in scan-line order
- "walk" edges: use edge slope to update coordinates incrementally
- on each scan-line, scan left to right (horizontal span), setting pixels
- stop when bottom vertex or edge is reached

Durand09

Edge Walking

Edge Walking

Advantage: very simple

Disadvantages:

- very serial (one pixel at a time) \Rightarrow can't parallelize
- inner loop bottleneck if lots of computation per pixel
- special cases will make your life miserable
- ullet horizontal edges: computing intersection causes divide by 0!

• sliver: not even a single pixel wide

Edge Equations

- 1. compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
- 2. scan through each pixel and evaluate against all edge equations
- 3. set pixel if all three edge equations > 0

Luzano&Popovico1

Edge Equations

Can we reduce #pixels tested?

- 1. compute a bounding box: x_{min} , y_{min} , x_{max} , y_{max} of triangle
- 2. compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
 - can be done incrementally per scan line
- 3. scan through *each* pixel in bounding box and evaluate against all edge equations
- 4. set pixel if all three edge equations > 0

Hierarchical bounding boxes

• how to quickly exclude a bounding box?

Edge Equations

```
void edge_equations(vertices T[3])
{
    bbox b = bound(T);
    foreach pixel(x, y) in b {
        inside = true;
        foreach edge line L<sub>i</sub> of Tri {
            if (L<sub>i</sub>.A*x+L<sub>i</sub>.B*y+L<sub>i</sub>.C < 0) {
                inside = false;
            }
        }
        if (inside) {
            set_pixel(x, y);
        }
    }
}</pre>
Hanrahan/Funkhouserog/Durando8
```

What Color the Pixel?

Both edge walk and edge equations tell you if a pixel is inside a triangle, but how to color the pixel?

As with coloring a line, want pixel color to be an interpolation of triangle's vertex colors

How much is the color of a pixel influenced by each vertex? How do we weigh each vertex's color in setting the color of a pixel?

Linear, Affine, Convex Combinations

Given points \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , ..., \mathbf{p}_n and coefficients α_1 , α_2 , α_3 , ..., α_n :

- linear combination: $\alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2 + \alpha_3 \mathbf{p}_3 + ... + \alpha_n \mathbf{p}_n$
- affine combination: linear combination with $\alpha_1 + \alpha_2 + \alpha_3 + ... + \alpha_n = 1$
- convex combination: affine combination with each $\alpha_i \ge 0$

More generally, the convex combinations of a set of points is the convex hull of those points

 geometric interpretation?
 The smallest convex polygon such that all points in the given set are either internal or boundary points

Barycentric Coordinates

Think of \overrightarrow{PQ} and \overrightarrow{PR} as (non-orthogonal) basis of the plane defined by the three vertices of $\triangle PQR$

Any point **p** in the plane is an affine combination: $\mathbf{p} = P + \beta(Q - P) + \gamma(R - P) = (1 - \beta - \gamma)P + \beta Q + \gamma R$

Triangle Rasterization with Barycentric Coordinates

A triangle is a set of all possible convex combinations (convex hull) of three points

- $\triangle PQR = \{ \alpha P + \beta Q + \gamma R \text{ for all } \alpha, \beta, \gamma \ge 0, \text{ and } \alpha + \beta + \gamma = 1 \}$
- \Rightarrow a point $M=\alpha$ $P+\beta$ $Q+\gamma$ R is inside the triangle iff $\alpha+\beta+\gamma=1$, and α , β , $\gamma\geq 0$
- works in any dimension!
- α , β , γ are called the barycentric coordinates
- barus: Greek for "heavy" barycenter: the balance point between two objects
- incidentally, the interpolating parameters t and (1-t) in the parametric equation of a 2D line are also barycentric coordinates

Geometric interpretation?

Barycentric Coordinates

For the triangle, we're only interested in the points where $\beta + \gamma \le 1$ and $\beta \ge 0$ and $\gamma \ge 0$

and we have ourselves a convex combination: $\Delta PQR = \{ \alpha P + \beta Q + \gamma R, \forall \alpha, \beta, \gamma \mid \alpha + \beta + \gamma = 1 \text{ and } \alpha, \beta, \gamma \geq 0 \}$

• for $\alpha + \beta + \gamma = 1 \Rightarrow 0 \le \alpha \le 1$

• for the mathematically inclined, where are the points when $\alpha + \beta + \gamma \neq 1$?

Barycentric Coordinates

Given a point in triangle, how to compute its γ (or α , β)?

1. using the implicit line equation of the triangle edges: let $\hat{\mathbf{n}}_{\overline{pq}} = \overline{UR}/\|\overline{UR}\|$ be the normalized normal of \overline{PQ} , $\delta \overline{UR}$ is a projection of $\gamma \overline{PR}$ (and of \overline{PM}) onto $\hat{\mathbf{n}}_{\overline{pq}}$ then:

$$\left\| \delta \overline{UR} \right\| = \hat{\mathbf{n}}_{\overline{p_{\overline{Q}}}} \cdot \gamma \overline{PR} = \hat{\mathbf{n}}_{\overline{p_{\overline{Q}}}} \cdot \overline{PM}$$

$$\gamma = \frac{\hat{\mathbf{n}}_{\overline{p_{\overline{Q}}}} \cdot \overline{PM}}{\hat{\mathbf{n}}_{\overline{p_{\overline{Q}}}} \cdot \overline{PR}} = \frac{f_{\overline{p_{\overline{Q}}}}(M)}{f_{\overline{p_{\overline{Q}}}}(R)}$$

2. using the signed area of the triangle and sub-triangles

Barycentric Coordinates

Think of \overline{PQ} as the base of both $\triangle PQR$ and $\triangle PQM$

If P, Q, R are not collinear (on a line, degenerate triangle), the signed area $S(\triangle PQR) \neq 0$, and we can find (α, β, γ) for M as:

$$\alpha = \frac{S(\triangle MQR)}{S(\triangle PQR)}, \ \beta = \frac{S(\triangle MRP)}{S(\triangle PQR)}, \ \gamma = \frac{S(\triangle MPQ)}{S(\triangle PQR)}$$

What's a signed area?

How do you compute the signed area of a triangle?

Computing the Area of a Triangle

T

Recall $\sin \theta = h / ||\mathbf{v}||$

Area computation:

$$A(PQTR) = ||\mathbf{u}|| h$$

$$= ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$$

$$= ||\mathbf{u} \times \mathbf{v}||$$

$$A(\triangle PQR) = \frac{1}{2} ||\mathbf{u} \times \mathbf{v}||$$

Works for any triangle

What is $0.5|(\mathbf{q}-\mathbf{p})\times(\mathbf{r}-\mathbf{p})|$ where \mathbf{p} , \mathbf{q} , \mathbf{r} are points in 3D?

Cross Product in 3D Review

The cross product $\mathbf{u} \times \mathbf{v}$ is a vector orthogonal to the plane of \mathbf{u} and \mathbf{v} and has length

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta$$

Vectors \mathbf{u} , \mathbf{v} , and $\mathbf{u} \times \mathbf{v}$ form a right-handed system

Since $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and $\mathbf{u} \times \mathbf{v} \perp \mathbf{v}$, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$

Note:

- 1. the notation $A(\triangle PQR)$ means the vertices of the triangle are visited in the right-handed manner: P to Q to R
- 2. $A(\triangle PQR) = A(\triangle QRP) = A(\triangle RPQ)$

Normal Vectors

What is the normal vector of a plane? A vector perpendicular to the plane

What is a unit normal?

Normal vector of magnitude one: $\mathbf{n}/|\mathbf{n}||$

If a planar surface contains the points \mathbf{a} , \mathbf{b} , and \mathbf{c} , a normal can be computed as: $\mathbf{n} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$

If **a**, **b**, and **c** are arranged counter-clockwise, the normal points outward and the surface is the front of the polygon; otherwise, the surface is the back of the polygon and the normal points inward

Cross Product in 3D Review

For
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{e}_x + \begin{vmatrix} u_2 & u_0 \\ v_2 & v_0 \end{vmatrix} \mathbf{e}_y + \begin{vmatrix} u_0 & u_1 \\ v_0 & v_1 \end{vmatrix} \mathbf{e}_z$$

with the standard basis: $\mathbf{e}_x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e}_y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_z = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

we get: $\begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} \times \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 v_2 - u_2 v_1 \\ u_2 v_0 - u_0 v_2 \\ u_0 v_1 - u_1 v_0 \end{bmatrix}$

Example $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4-1 \\ 0-8 \\ 2-0 \end{bmatrix} = \begin{bmatrix} 3 \\ -8 \\ 2 \end{bmatrix}$

Cross Product in 3D Review

Since $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and $\mathbf{u} \times \mathbf{v} \perp \mathbf{v}$, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$

Example:
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Cross product can be computed using determinant:

$$\begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} \times \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ u_0 & u_1 & u_2 \\ v_0 & v_1 & v_2 \end{vmatrix}$$

$$= \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{e}_x + \begin{vmatrix} u_2 & u_0 \\ v_2 & v_0 \end{vmatrix} \mathbf{e}_y + \begin{vmatrix} u_0 & u_1 \\ v_0 & v_1 \end{vmatrix} \mathbf{e}_z$$

$$= \begin{vmatrix} scalar & vector & scal$$

Signed Area in 2D

Triangle $\triangle PQR$ in 2D:

$$P = \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}, Q = \begin{bmatrix} q_0 \\ q_1 \end{bmatrix}, R = \begin{bmatrix} r_0 \\ r_1 \end{bmatrix}$$

To compute the area of $\triangle PQR$:

First extend points to 3D

(assume points to be on z = 0 plane)

$$\mathbf{u} = \overline{PQ} = \begin{bmatrix} q_0 - p_0 \\ q_1 - p_1 \\ 0 \end{bmatrix}, \mathbf{v} = \overline{PR} = \begin{bmatrix} r_0 - p_0 \\ r_1 - p_1 \\ 0 \end{bmatrix}$$

Signed Area in 2D

$$\|\mathbf{u} \times \mathbf{v}\| = \| \begin{bmatrix} u_0 \\ u_1 \\ 0 \end{bmatrix} \times \begin{bmatrix} v_0 \\ v_1 \\ 0 \end{bmatrix} \| = \| \begin{bmatrix} 0 \\ 0 \\ u_0 v_1 - u_1 v_0 \end{bmatrix}$$

$$= |u_0 v_1 - u_1 v_0|$$

$$= |u_0 v_1 - u_1 v_0|$$

 $= \begin{vmatrix} u_0 v_1 - u_1 v_0 \end{vmatrix}$ Which is also: $\det \begin{bmatrix} u_0 & v_0 \\ u_1 & v_1 \end{bmatrix} = u_0 v_1 - u_1 v_0$

u×v is a vector with only the z-element, $||\mathbf{u} \times \mathbf{v}||$ is just the length of the vector

except that the determinant preserves the sign, which indicates the direction of $\mathbf{u} \times \mathbf{v}$

Considerations

• To compute the ratio $S(\triangle MPQ)/S(\triangle PQR)$, no need to divide the signed area by 2 ...

- If area instead of signed area is computed, to check whether a sub-triangle is of the same sign as the triangle, compute the dot product of the normals, e.g., signof $\gamma = \text{signof } ((\overline{MP} \times \overline{MQ}) \cdot (\overline{RP} \times \overline{RQ}))$
- $S(\triangle MPQ) = \frac{1}{2} * ||\overline{PQ}|| * height(M \text{ from } \overline{PQ})$ $S(\triangle PQR) = \frac{1}{2} * ||\overline{PQ}|| * height(R \text{ from } \overline{PQ})$ $\frac{S(\triangle MPQ)}{S(\triangle PQR)} = \frac{height(M \text{ from } \overline{PQ})}{height(R \text{ from } \overline{PQ})} \text{ but that's} = \frac{f_{\overline{PQ}}(M)}{f_{\overline{PQ}}(R)} \text{ hm} \dots$

(which is cheaper to compute?)

Triangle Rasterization with **Barycentric Coordinates**

Given a triangle PQR (non-degenerate) for each pixel M in the bounding box of PQR { check whether M is inside POR

For example:

1 coordinate = $0 \Rightarrow M$ on \triangle edge

2 coordinates = 0, 1 coordinate = $1 \Rightarrow M$ on Δ vertex All points on the OM line are equidistant from the \overline{PR} line and has $\beta = 1$; similarly, all points on the RM 'line has $\gamma = 1$

Coloring a Triangle

Let:

- P, Q, R be the vertices of the triangle
- \mathbf{c}_P , \mathbf{c}_O , \mathbf{c}_R their respective colors

How do we color point M as a blend of the color of the three vertices?

- compute the barycentric coordinates of M
- combine colors using those coordinates:

$$\mathbf{c}_{M} = \alpha \, \mathbf{c}_{P} + \beta \, \mathbf{c}_{Q} + \gamma \, \mathbf{c}_{R}$$

Shared Edges

Don't want to double draw the edge, especially if both triangles are transparent

Don't want to skip the edge either!

Trick: use an off-screen point, e.g., (-1, -1), and "award" the edge to the triangle whose third (nonshared) vertex is in the same (or opposite) side as the off-screen point (how to determine sided-ness?)

Polygon Clipping

Can we simply reduce the problem to line clipping of the edges?

TF

Polygon Clipping

Sutherland-Hodgman "edge walking"

- starting from an inside vertex, traverse the vertices of polygon in order
- do an inside/outside test for each next vertex
- in-in: output next vertex
- in-out: output intersection
- out-out: output nothing
- out-in: output intersection and next vertex

(there are other more efficient and complex algorithms, e.g., Liang-Barsky parametric space and clipping in $4\mathrm{D}$)

Polygon Clipping

Also works with concave polygon:

$\mathbf{v}_{\mathbf{k}}$	v_{k+1}	Case	Output
$\mathbf{v_0}$	$\mathbf{v_1}$	i-o	i_1
$\mathbf{v_1}$	$\mathbf{v_2}$	0-0) <u>=</u>
$\mathbf{v_2}$	v_3	o-i	i_2,v_3
$\mathbf{v_3}$	V_4	i-o	i_3
V_4	v_5	0-0	-
v_5	v_6	o-i	i_4,v_6
v_6	$\mathbf{v_0}$	i-i	$\mathbf{v_0}$

clipping edge

then continue with other clipping edges . . .