EECS 487: Interactive Computer Graphics

Lecture 5:
- Finish up line rasterization
- Line clipping

Clipping

Clip against viewing window/viewport

Why clip?
- avoids rasterizing outside window
- speeds up rasterization
- prevents memory errors
- avoids divide by 0 and overflows
- in 3D, clip against view volume
- polygons that are too close can obscure view
- those too far shouldn’t be visible and could mess up depth buffer

Clipping Line Segments

How to clip?
- preprocessing to exclude/include trivial cases
 - accept/reject bitmask test: Cohen-Sutherland
- clip the intersecting cases:
 - parametric line trimming: Cyrus-Beck

Clipping Cohen-Sutherland

Trivial Accept/Reject test: compute a 4-bit “outcode” (L_i) for each end point (p_i):

Before clipping

after clipping

Cohen-O'Sullivan

Accept line if $L_0 \& L_1 = 0$ (bitwise or) both points are inside window
Reject line if $L_0 \& L_1 \neq 0$ (bitwise and) line is outside window
Else may need clipping
Line Clipping Examples

- **A**
 - \(A_0 = 1001 \)
 - \(A_1 = 1000 \)
 - \(A_0 \land A_1 = 1000 \) - A is Rejected

- **F**
 - \(F_0 = 0000 \)
 - \(F_1 = 0100 \)
 - \(F_0 \lor F_1 = 0100 \) - F needs clipping

- **E**
 - \(E_0 = 0000 \)
 - \(E_1 = 0000 \)
 - \(E_0 \lor E_1 = 0000 \) - E is Accepted

- **H**
 - \(H_0 = 0100 \)
 - \(H_1 = 0010 \)
 - \(H_0 \land H_1 = 0100 \) - H needs clipping?

Line Clipping Cohen-Sutherland

- Each ‘1’ in the outcode indicates the line intersecting an edge, e.g., \(0100 \) means intersection with y-min.
- Starting from the **left most outside point** (A in example), going left to right (e.g.,) on the outcode, compute the intersection with the window edge that cuts the line into two segments.
- Test the outcodes of each segment, clip the segment(s) **outside** the window.
- **Recurse** until all segments are checked.

Normal Vectors

- **What is the normal vector** of a line? A vector perpendicular to the line.

- **What is a unit normal?**
 - Normal vector of magnitude one: \(\mathbf{n}/||\mathbf{n}|| \)

- Normal vectors are important to many graphics calculations.

Implicit Line Eqn. Using Vectors

- Let \(\mathbf{n} \) be a normal vector of the line and \(\mathbf{q} \) a point on the line.
 - the point \(\mathbf{p} \) is on the line iff \(f(\mathbf{p}) = \mathbf{n} \cdot (\mathbf{p} - \mathbf{q}) = 0 \)
 - the point \(\mathbf{p}' \) is above the line iff \(f(\mathbf{p}') > 0 \) \((\theta' < 90')\)
 - the point \(\mathbf{p}'' \) is below the line iff \(f(\mathbf{p}'') < 0 \) \((\theta'' > 90')\)
 - if \(f(\mathbf{p}) \neq 0 \), \(\mathbf{p}' \)’s projection onto \(\mathbf{n} \) has a non-zero length.

\[\theta \text{ measured in the direction of travel} \]
Cyrus-Beck Line Clipping

Compute the intersection between line u and edge i

Let:
• u the vector from p_0 to p_1: $u = (p_1 - p_0)$
• n_i be the normal of edge i, pointing away from the clipping window
• p_e an arbitrary point on edge i

then:
• if $n_i \cdot u = 0$ the line is parallel to the edge i
• otherwise, let $p_e(t)$ be the intersection of u and edge i
• solve for t_i (repeat for each of the four edges):

$$n_i \cdot (p_e(t_i) - p_e) = 0$$
$$n_i \cdot [p_0 + t_i(p_1 - p_0) - p_e] = 0$$
$$n_i \cdot [p_0 - p_e] + n_i \cdot t_i u = 0$$

$$t_i = \frac{n_i \cdot [p_0 - p_e]}{-n_i \cdot u} = \frac{n_i \cdot [p_e - p_0]}{n_i \cdot u}$$

u p_0 p_1 n_i p_e t_i

Foley et al. ’94

Cyrus-Beck Line Clipping

Now classify each intersection point as Potentially Entering (PE) or Potentially Leaving (PL) at edge i:
• if $n_i \cdot u < 0$, intersection is PE (why?)
• if $n_i \cdot u > 0$, intersection is PL (why?)

Let t_L be the MIN of the t_i’s that are PL and t_E the MAX of the t_i’s that are PE
• if $t_L < t_E$, the line is outside the clipping window (Line 2)
• otherwise (t_L, t_E) are the clipped line’s bounding points
• in case actual line segment starts or ends inside window, $t_L < 0$ or $t_E > 1$ respectively, we let $\max(0, t_L)$ and $\min(1, t_E)$ be the clipped line’s bounding points

Foley et al. ’94

Cyrus-Beck Line Clipping

Let two sides of the clipping window define a region $E(nter)$ that the line enters and never leaves

Let the other two sides define a region $L(ave)$ that the line starts in and eventually leaves

(Algorithm determines E and L automatically!)

The dot products of the line and the normal (n) of the boundary edges determine the parameters (the t’s) at the intersection points

Whereas Cohen-Sutherland is limited to upright rectangle, Cyrus-Beck works well with arbitrary convex polygon as clipping area