EECS 487: Interactive
Computer Graphics

Lecture 4: GPU Overview
Raster Graphics
Line Rasterization

Unified Pipeline Architecture

Non-Unified Architecture Unified Shader Architecture
input input
Shader I
l 1B || 1B
Shader II o multiple
different v cores allow
instruction ! for data
sets Shader I1I |L"ﬂ [os ToLTTes parallelism
Shader IV ™
same
output . . output
P instruction P
set

[Akenine-Mbller & Strom08]

Pipeline Architecture

« Provides task parallelism, T oo
meanlng? Per-vertex ops
« Benefits?) e
« assume a 7-stage pipeline, each [renrr | [vt |
stage taking time 7 to complete, e
how long does it take to complete o
7 jobs without pipelining? ﬁﬁ%ﬂn g
with pipelining? el
- the output of a pipeline is

determined by its bottleneck stage

- each stage can use parallel processing
(data parallelism)

Multi-Core GPU with
Unified Pipeline Architecture

OpenGL commands

Shader
Core

\;‘ Shader Shader Primitive Assembly
Cmd C | Core Core
Programmable
processing Shader Shader

N cores
Rasterizer —
S Shader

(runs vertex and Cole
Work Distributor

prog

Frame buffer ops |
J

Shader
Core

Shader
Core

HIEIENES

|

Memory
Tenures

[Hanrahan09]

Signal Digitization and Sampling

Analog audio signal:

Analog waveform

VA_/\J/

Digitized sample

Sampling: reading the
signal at certain rate to
collect samples

Signal can be reconstructed
from the samples

Analog waveform and digital equivalent

Raster Graphics Display

Generates and stores raster image in frame buffer

Reads frame buffer contents and turns on pixels
* requires constant update (60-80 Hz)
» most display devices nowadays are raster display

(as opposed to vector display)

raster scan ' } scan lines
order

vertical retrace/
blank interval

Raster Images

Pixel (picture element) =
- a discrete, point sample of a scene

- the digitized code values captured by an addressable
photoelement (sensor hardware) [ISO] Apixelis. ..
« including intensity, RGB color, depth, etc. T

HE
N

Image == sampling of a scene
rasterized as a 2D array of pixels | =

7/ nota
box!

UL

Raster == a 2D array of pixels -
« indexed (i, j) o ?
+ bottom-left pixel is (0, 0) ::

« top-rightis (N,—1, N,—1) VV/L/W’“
circle!

Example Raster Display

LCD:

« pixels turned on one row at a time via the row electrodes

« individual pixels in the row turned on/off by appropriate voltages on
the column electrodes

- active matrix pixels keep their state
between updates (resulting in brighter display)

Active—matrix

Counter electrode

Column electrodes

switches

Raster Graphics Systems

System Data

/| copy bits from memory to framebuffer

Bus BitBlt(x0, yo, xn, yn, imagedata);

)

A

¢ (|epu_

U | CPU Systsm memory

framebuffer I

video

““ = graphics >

controller

graphics board

B/W pixel: 1 bit
RGBA pixel: 4 Bytes

Raster G

4

raphics System

Framebuffer accessed by GPU
randomly as each pixel is shaded

GPU

Display adapter scans framebuffer

a

framebuffer

sequentially and turns each

element into light to update display

video
graphics
controller

v

=

graphics board ==

Pixel Values

Three channels: Red, Green, Blue
- these three colors are enough to create a rich palette

« each channel takes a range of values
+ 24-bit color means
+ 3 bytes — one byte per channel
+ 0...255 for a color

+ 1 byte per channel is enough for display

+ but may not be enough if you want to
perform computations

+ instead, use floating point values 0.0 to 1.0
for computations

Be careful with
your float to
int conversion

Know when to

use floorf (),
ceilf (), and

rintf ()

RGBA: A (a € (0,1)) is to control opacity

+ useful for compositing: ¢ = a ¢, +

Double Buffering

Problem: image tearing if
framebuffer is only partially
updated when the next scan
starts

Solution: double buffering:

- render to back buffer. ..

« ... while the front buffer is displayed
(multiple times if necessary)

(1 _Oé) Chack

Frame 1 Frame?2 Displayed

| Framebuffer Pointer |

PN

- swap buffers during vertical blank/
retrace interval when back buffer is
ready

X

Completing the Drawing

Issued GL commands may be stuck in buffers along
the pipeline, e.g., waiting for more commands to be
issued before sending them in batch

You need to flush all these buffers if you have no
more commands to issue to effect execution start

*void glutSwapBuffers (void);
swaps back and front buffers if double buffering is in effect
(as specified with glutTnitDisplayMode ()),
implicitly calls g1F1ush () ; no effect if single-buffered

Double Buffered GLUT Display Mode

Skeletal display () callback for GL window to render
a line:

void disp(void)
{
/* Set color, linewidth etc */
glBegin (GL_LINES) ;
glVertex2f (x0,y0) ;
glVertex2f (x1,vy1l);
glEnd () ;
glutSwapBuffers(); /* swap buffers */
/* was glFlush () or glFinish();
glutSwapBuffers () avtomatically calls glFlush () */

Double Buffered GLUT Display Mode

#include <GL/glut.h>

int main(int argc, char *argv[])

{

glutInit (&argc, argv);

/* Create the window first before drawing! */
glutInitDisplayMode (GLUT DOUBLE | GLUT RGBA);
/* double buffered, RGBA color */
glutInitWindowSize ((int)width, (int)height);
wd = glutCreateWindow (“Title”);
/* wd is the window handle */

/* register callback functions/event handlers */
glutReshapeFunc (reshape) ;
glutDisplayFunc (display) ;

glutMainLoop () ;
return 0;

Rendering a Line

Lines are a basic primitive that
must be done well

In OpenGL: just specify
connection type and vertices:

How is it implemented?

Requirements:
+ continuous appearance,

« uniform thickness and brightness

glBegin (GL LINES) ;
glVertex2f (x0,vy0);
glVertex2f(x1l,yl);
glEnd () ;

close to actual continuous line

fast (line drawing happens a lot!)

Describing a Line and Line Segment

Three ways to describe a line:
- slope-intercept (or explicit) form: y =mx + b

- implicit* form: f(x, y) =y —-mz—b=0
« parametric form, using point and vector:
P(0) =Py T 7(P; ~Po)

(w0, Y0)

Given a line segment between (z,, y,) and (z,, ,), it can be
described in slope-intercept form as y = mx + b, where
m=2"20 and b=y,—mz, zyo—(ujxo
Ty~ Ty Ty~ Ly
Y1 =Y

I —

Or in implicit form: f(x,y)=y—(x—(y, —mx,)=0

* “implicit” means the equation doesn’t generate points on the line,
rather it confirms whether a point is on the line

Drawing a Line Segment; B
. . 3
in Raster Graphics n ==
1
Todraw a line from (1, 2) to (6, 4) 0
- for now assume integer coordinates 01234567
5]
Want: thinnest line possible, withno ~ # ﬂlg_
. . . 3 2 7
gap, i.e., the pixels must be touching , :‘&7‘
each other, even if only at the corner (1)

Options:

- use the slope-intercept equation

« point sampling: turn on every pixel
whose center the line “touches”

+ Bresenham midpoint algorithm

Line Segment and Relative Position

A point at (z,, y,) is below the line segment if

< yl _yo (z1,91)
xl _XO T2, Y2
(0 y0) ezie)
or, evaluating the line’s implicit equation at (-, 1,) gives:
: Y=Y
S,y = _(MJ _(y()_mxo)<0
X~ Xo

In general, f'(x, y) > 0 describes area above the line,
and f'(x, y) < 0 describes area below the line

(x1,91)
S>>0 -0
halfspace halfspace
O f(=y<0
(0, 90)
Use Slope-Intercept deally
// step by dx =1
y_mx+b // then dy is just = m
V=Y | dy = dyl-y0)/(x1-x0); s,
"= y=y0;
X, — X, ’ -
! 0 for (x = x0;x <= x1; x++) { Yo [|
A, =mA set{x, Gound(y)); | i
y X | |
y += dy ‘ 1
b=y, —mx, } Xy i

Y1 »-6 b o
Yo—— | Yo ‘

X0 X1 X0 X1

} Gap

discretization rounding error accumulation |m|>1
O’Brieno8

Point Sampling

Turn on every pixel Consequence:
whose center falls
within the line

L
AT\

5

T
3 A=)

2 ‘g :

1

0

01234567

Problem:

not thinnest line
possible
Midpoint Algorithm f (303050

O [fzy<0
Simple case first: assume 0 <m < 1

Compute midpoint between the two pixels at x +1:

if (f(midpoint) < 0)

line passes above midpoint,
y+1

y+0.5

set pixel (x+1,y+1)

else
line passes on or below midpoint,
set pixel (x+1, v)

Midpoint Algorithm

Thinnest line possible,
with no gap, i.e., the
pixels must be touching
each other, even if only
at the corner

e

01234567

S =W W
|

Implicit 2D Lines

In computing slope (m), to avoid dealing with fractional
slope (or worse, zero denominator), restate f'(z, y) as:

fx,y)=(@—-mx—b)zx,—z,)=0

Z(y_[u]x_(yo _[u]xo)J(x1 _xo)
Ty — Xy T — Xy

= (.’l’l _xo)y_(yl _yo)x_(xl _xo)yo +(y1 —yo)$0
= (2, —x))y— (= yp)x + (xy, — ,Y,)

/

Then @’(x, »=Ay-Az+ CW or,
for A = (vo—y,), B= (2, — 2): f (#,) = Az +By +C|

T o
Let: C =x,y, —x,y, =

o Vi

Incremental Midpoint Algorithm Example: (3,7) to (11,10)

Lines can then be computed incrementally
(assume 0<m<1):

vy = y0; dx = x1-x0; dy = yl-y0; dx = 11-3 = 8;

9 . 1027 = 3

S(@y) =Ay-Az+C ST jy—d 1? ; 5
for (x = x0; x <= x1; x++) { e

fla+l,y) =Ay-A(@+)+C

set pixel(x, y); fmid = £(4, 7.5) = 1
=A1yfAy:rfAy+ C o o ‘ o
=f(I,y)*Ay if (fmid <) { // line above midpoint . ; fmid
y++; fmid += dx-dy;
S+, +D)=f(5,9) + (8, -1A,) tee | 3 7 1
o o+l fmid -= dy; 4 7 -2
and drawn incrementally:) 5 8 3
y = y0; dx = x1-x0; dy = yl-yp; f(m,y)>0 (Syl)) ” /H
fmid = £ (x0+1, y0+0.5); 10
for (x = x0; x <= x1; x++) { O f(w,J’)<0 9
set _pixel(x, y); (20, 90) 8
if (fmid < 0) {// line ses above midpoint 7
y++; fmid += dx-dy; 6

} else { fmid -= dy¥ } 34567 891011

Integer Only Line? What if (0 <m < 1)?

Can the line be drawn using only integers (no floats)?

. Casel:0<m <1, done
to reduce round-off error and increase performance

Case II (steep slope): swap the zand y coordinates

2f(x, y) = 0is a valid description of the line f(z, y) Case III (going towards smaller 2):
hence, the algorithm can be rephrased as: swap the two points
. I
fmid2 = 2+f (x0+1, y0+0.5); // thus no more 0.5 Case IV: swap the points and then swap ™.
dx2 = 2% (x1-x0); dy2 = 2*(y1-y0); Be careful with the =, y coordinates of each point = /.1
for (x = x0; x <= x1) { float to S B
] . our . . g
serpiel (y ¥ , 4 . What to do in case of negative slope? 27
if (fmid2 < 0) { y++; fmid2 += dx2-dy2; } int conversion IV
else fmid2 -= dy2; i
}
Know when to . . : .
Rasterization implemented use £1007f (), Mldpomtf‘algont.hm can.be used to draw circle and
in GPU as a fixed function ceilf (), and other conic sections (ellipses, parabolas, hyperbolas)
rintf () « exploit symmetry —only need to compute 1 octant

Image Coordinates Conventions

OpenGL (and Labs 1 & 2 & PA1)

- pixel center is at half-integers

+ (0,0) at bottom left corner of
screen (Cartesian coordinates)

Direct3D 9

- pixel center is at integers

+ (0,0) at screen top-left corner
(raster scan direction)

-~ 12

A
L

i f - 12
i-1/2 i+1/2

Direct3D 10/11 i i
- pixel center is at half-integers R
« but (0,0) at screen top-left corner _____

J+l

Linear, Affine, Convex Combinations

Given points p;, p,, P3, ---» P,
and coefficients oy, ,, a3, ..., o
+ linear combination:

ap; T Py T asps . TP,
» affine combination:

linear combinationand oy T o, T a3+ ... t o, = 1
« convex combination:

affine combination and each ;> 0

What is described by this set of points in 3D?
ap+(—-a)q,where 0 <a <1

Parametric 2D Lines

Given two points p, = (%, ¥,) and p, = (2, »),
a line can be described as 2(0) 2+t —)
[y(t) }[Yo + (Y, ~ Yo) }
in parametric form: p(¢) = p, + {p, — Py)
or:p() = (1-0py+1p,
or as a pointo and a vectord: p(f) =0 + td

Parametric Line Drawing

p(H)=(—fH)p, + ¢ p,: is a convex combination
(interpolation) of two points:

« any convex combination of two points lies on the straight
line segment between the points

(1—t)p0+tyq,
./. 1

Po

- aremarkably general concept, quite useful for blending
- interpolation of: positions, colors, vectors

Coloring Thick Lines Dot Product Review

The dot product of two vectors u and v is

How to interpolate the color of
what color?g

each pixel on a thick (multi-pixel v
width) line? a scalar value wv = |[ul||v||cos® = cos6 =
Jullivi
1. Compute how far the pixel is ! Another way to compute u-v:
from both endpoints
u, Yo Yo)
T
wv=| u v (=wv=luy uou]l v =D uy, = ugvy uy, tu,v
2. How to compute? ! ! o B2 A g; 0o T T2
* project pixel center onto the line to U, V2 V2
find parameter ¢ of the parametric 0
line equation If 6 =90° (uLlv)thenuwv =20
If wis normalized, i.e., [[u|| =1, uu=1

3. Correctly blended color can _ _ .
then be computed based on ¢ How to project pixel u-v = v-u (commutative)

ter onto the line? .
centerontotheline (u+v)-w=u-w+ v-.w(distributive)

Coloring Thick Lines

How to interpolate the color of each pixel
on a thick (multi-pixel width) line? what color?e

Dot Product Review

« Dot product can be used to project a vector

orthogonally onto another vector: Need to know how far the pixel is from

U 1 .
vi=ru, = v ||, and recall that cosf = M both endpoints (How?)
|¥]| 1. Project pixel center onto the line to

\ / IIv1[=|[v]|cos 6 find parameter ¢ of the parametric line

uv equation t
vi=| — |u _ ||V|| uv « dot product with a ==

||u|| a ||u| || |V|| performs projection onto the unit length
ifuis nomm v vector

= V1=

v'=(uv)u ||ul| 2. Correctly blended color canthen ©

be computed based on
(= [|ro)e= r-

