EECS 487: Interactive
Computer Graphics

Lecture 1: Introduction to
« Computer Graphics
 the Course

Computer Graphics

Algorithms for image synthesis
- define a set of objects

« arrange them in a scene

« illuminate the scene

= light emission, transmission, absorption,
reflection, refraction must all be simulated!

« convert the 3D scene into a 2D view

All done in a computer, operating on an
imaginary scene with internal
representations for simulated objects,
lights, and cameras

Emulating light transport in this imaginary
scene requires enormous amount of
mathematical, physics, and programming
sophistication

lllumination
Reflection
Reflected light creates the image:
« light leaves source
- light travels through an atmosphere Absorption
- light interacts with surfaces:
absorption, reflection, refraction
« light arrives at receiver (eye, film, sensor)
In the real world, light transport
“happens naturally”
What This Course Covers
Computer ~ Rendering Computer
Graphics — EI;/CiSSiOLLZ
(EECS 487) Geometric model | age()
phalysis
Mode 'ng AdfiEiiem Image-Based
L 5 Modeling and
Rer:fi)ge::g- P ObjeCts Rendering (IBMR)
constructing 2D images
from 3D models
Animation: o
. . . Digital image
simulating changes over time
Imaging:
representing and manipulating Imaging
2D images

(EECS 556) Velho et al. 2008

Geometric Modeling

Why do geometric modeling? g
What is a 3D model?

How are objects represented
internally in a computer?

. ™~

| “Computer graphics models
are like movie sets in that
usually only the parts that will
be seen are actually built.”

_ Cook, Carpenter, Catmu{[/)

Geometric Modeling Topics

How are the models represented?

* points, vectors, triangles
- interpolation, barycentric coordinates
+ polygonal meshes

« implicit curves and surfaces
» splines
« subdivision surfaces

How are the models arranged in a scene?

+ 2D and 3D rigid transformations

+ 3D viewing and perspective projections,
homogeneous coordinates

» modeling hierarchies

We will briefly cover procedural models

Geometric Modeling

How are the models created?

first “physically-realistic”
computer generated image

We don’t cover model creation . ..
(ARTDES 300)

Rendering

What is rendering?

Synthesizing a 2D image from
a 3D geometric model

Given:
- geometry

« lighting and shading
« and material:

« colors

« textures

produce an image

Determine how much |ight is (“All it takes is for the rendered |

reflected from each point tothe ~ mage tolookright”

\

— Blinn)

viewer

Gargoyle: Daschbacher&Kautz 08

Rendering Topics

Determine how light interacts with
objects/surfaces: what color each pixel

« scan-line conversion, anti aliasing

« illumination and reflection
models for different surfaces

* GPU programming

* texture mapping

Different rendering objectives:
» Photorealism

« Interactive performance

« Artistic expression

« CAD and Scientific Visualization

Interactive Rendering

Want to be “as photorealistic as possible”
But must produce each image within msecs

Common tricks to speed up lighting
computations:

» “faking it” in image/screen space, e.g., shadow maps
* pre-computation, e.g., environment map

* probabilistic approximations

* exploits GPUs

Games = ~$200 consumer electronics!

Photorealistic Rendering

Physically-based simulation of light

Realistic global illumination:
- shadows, caustics, color bleed

Be as true to the physics of light as necessary
Slow, minutes to hours per image

Used for special effects, movies
- big budgets, tight schedules = server farm

(not covered .. .)

Artistic Rendering

Stylized, non-photo realistic
Artwork

[llustration

Data visualization

(not covered. . .)

L Animation Topics
Data Visualization

How to represent motion?

: : : * position, facing, etc. as a function of ti
Presentation and interpretation of data POSIHION, Tacing, €tc. as atunction ot Hime

* makes vast quantities of data accessible

: o
« perhaps the only way the data could be How to specify and control motion?

interpreted * keyframing: generate poses by hand or
New data representations motion capture, control interpolation with spline
Precision and correctness * dynamics: particle systems, 2w [- =
: | physically-based simulation: S X - idEsd
No cheating allowed! faces, skin, hair, cloth, fluid |
* behavioral simulation (“brains”) /\ ‘
How Much Math? “Computer graphics:
] . . Vectors and matrices: Mathematics made visible.”
Physics Simulation ' — James
2D, 3D, 4D
Cloth as mass-spring network Dot and cross products
Fluid dynamics Examples:
(not covered. ..) - Dot product: a-b = a,b, + a,b, + a,b,
» What is arccos[ﬂ} where a and b are vectors?
[all[b]

» What is 0.5|(q— p) x (r — p)|, where p, g, r are points in 3D?

» What is described by this set of points in 3D:
ap+(1—-a)q,where 0 <a <1
» Read the course note on Vectors and Matrices

/

/
[v

N
‘Much of graphicsis just |
translating math directly
into code. The cleaner the
math, the cleaner the
resulting code.”

3D Transformations

3D transformations used in
« positioning of the camera

« positioning of lights within a scene "
« positioning of objects within a scene
« transformation of objects in 2D and 3D

— Shirley
Iri);/

Most of these operations can be achieved by applying
4 x4 matrices to 4D vectors
« linear algebra and homogeneous coordinates

Will try to introduce math “as needed”, “just-in-time”

Graphics Software Stacks

web application application

0SG/03D scene graph -
polygons l
OpenGL 4.5 graphics API Direct3D 11
pixels l

Akeley

Notation

angle ¢.p.0,0

scalar a,b,t,uk,v,wl-’j

vector (handwritten) a,u,v,h(p)h, (@,,v.,h(p),h:) or (v,,v,v.)
point (alternative, handwritten) p.q.r (P.Q.R.p.q.1) or <17x Py -Pz>
unit or normal vector (handwritten) u (@)

line segment uv, EE,@

plane m:np+d=0

triangle AV v, (APQR)

matrix (handwritten) M.R_(p).LT(t) M ,R (p).1.T (7))
dot product u-v

cross product uxv

transpose of vector v or matrix M VT or(v, v, v)T and MT

Xy 'z

T
u®v=wyv, uyv, uyv,)

direct product (of color vectors) (Ve UyVy UV,

unary, perpendicular dot product o = Gy)7
y x

absolute value of a scalar |a|
length or norm or magnitude of a vector |v| or "v" ("a")
determinant of a matrix |M|

What this Course is NOT About

We do NOT cover:

- webpage design/rich Internet application:
HTML, CSS, Ajax, Flex/Flash, Silverlight, etc.
- graphics packages for:
« presentation: PowerPoint, Keynote
+ 2D drawing/painting: Photoshop, GIMP, OmniGraffle
+ 3D modeling: 3dsmax, Blender, Maya, AutoCAD
- scene graph management and rendering: Renderman,
Ogre3D, OpenSceneGraph, Java3D, 03D, three.js
» GUI programming:
+ Qt, Gtk, Carbon, Cocoa, Quartz, .NET, X11, etc.
+ Mobile graphics programming
(we will introduce OpenGL ES and WebGL)

Teaching Staff

Instructor: Sugih Jamin

email: jamin@eecs timich.edu =

Office: 4737 BBB

Office hours: MWF 10:30-11, Th 11:30-12 and by appt.

GSI: Lisa Dion

unigname: lisadion

Office hours: Tu 4-5, and by appt. in Learning Center of BBB

Extra lab grading time: Thu 6-7

Will lead lab sessions

Grader: Haohuan Wang (haohuanw)

Recommended
Readings

Redbook

Available online?
http://it-ebooks.info/book/2138/

Graphics &
TP3 Visuglization

Principles and Algorithms

T. Theoharis « G. Papaioannou + N. Platis + N. M. Patrikalakis

Prerequisites:

* EECS 281

e C++

* Linear algebra and
basic geometry

Course Web Site

http://www.eecs.umich.edu/~sugih/courses/eecss;87/

Last year’s lecture slides posted on web site, some
will be updated after lecture

- always grab a fresh copy if you need to consult a lecture note
- don't bother to keep a printed copy

Recommended Readings

OpenGL:
« OpenGL API| Tables accessible from the course web site

» many other books and sources listed on course web site
(Links)

We only touch upon Direct3D* tangentially (the
fundamentals should be familiar)

*Direct3D is the 3D graphics API of DirectX, which includes other APIs such as for input and audio control. The closest
equivalent of DirectX in the free world is SDL

Other Recommended

Readings 3 3D senever
computer

[Alan Watt | rhi edicion G I‘a n “ i c s X
A Y Y-,

Introduction With OpencL

samugi R, Buss 2 * CN Y

Real-Time
Rendering

H
\ @
¥
7
o0
ar |
od
23

uuuuu

FOLEY « UAN DAM « FEINER « RUGHES * PHILLIPS %‘ e sed 3

Course Directory (ITCS AFS/MFile)

https://mfile.umich.edu/?path=
/afs/umich.edu/class/eecsd487/f15/

FILES/
FOLDERS/

Available now:
lab0.tgz

How to Read the Syllabus Page

Mon 2D transforms: linear and affine transforms

(Z;Qg%j\ [Recommended reoding:]

HW1 * TP3 Sections 3.1-3.6, 3.10, Appendix A.

PAO Due
e 2D Geometric Transformations I won't be nagging
® Brown's Affine Transforms you; check the

Linked syllabus yourself

RZFHG e Course note on Transforms, 2009.

Optional reading:

e Matrices and Determinants.

Labs posted 7-5 days prior to due date (announced on ctools)

Course Announcements

Announcement page on course web site (ctools)

Both course web site and Announcement page are
“required readings”

Send both Lisa and myself email if you have any
questions

We will post FAQ’s on the Announcements page,
please check it first before asking your questions

Grading Policy

+ 1 Final Exam*: 15% Mon 12/21, 10:30-12:30
« 1 Midterm Exam*: 15% Mon 10/26, 6-8 pm, 1013 EECS

2 Homeworks and n Pop Quizzes: 16%

Hand in hardcopies
+ 10 Lab Assignments: 20% Graded in person
*4 Programming Assignments: 32% Turninonline

« Class Participation: 2%

Do not email us any
of your assignments!

* Make-up time must be requested within 2 weeks from today

Remote Lab Submission
Upload to 487 CTools’ Drop Box:

the result of running
% openssl shal [files ..]

Windows (not MD5):
http://www.nirsoft.net/utils/hash my files.html

or install Cygwin along with Net—openssh package

Once you have computed the SHA1, don’t make any
more changes to the files, or your SHA1 will become

invalid

Must still be graded in person by Lisa before the next

lab is due or get a zero for the lab

Lab Grading

During lab session and lab grading time ONLY
No lab grading in lecture

Lab grading during office hours only if no other
students are waiting with questions

Do NOT accost Lisa outside the lab

Computer Support

We provide Makefiles, but not IDE project files

You need to have your own laptop with at least
OpenGL 2.1 and GLSL 1.2 support (later versions ok)

You'll need to have OpenGL and GLUT installed on
your laptop, see relevant section of
http://www.eecs.umich.edu/~sugih/
courses/eecs487/common/notes/ide/

Collaboration

« All work must be done individually
« Cheating and plagiarizing are not tolerated

« To pass off the implementation of an algorithm
as that of another is also considered cheating:
* e.g., insertion sort is not heap sort
« if you can not implement a required algorithm,
you must inform the teaching staff when turning in your assignment
« Homework: consultation of online and offline sources
allowed, but must not be copied verbatim, you need to
show that you have understood the material. Cite your
sources, including classmates and roommates, but not
teaching staff or required readings

« Exams: see course Grading Policy web page

Late Penalty

Applied to HW and PAs after free late days are used up
Labs will not be accepted late

Penalty schedule:

« <24 hours: 4% of the assignment’s total points
« <48 hours: 8+4=12%

« HW will not be accepted more than 2 days late
« <72 hours: 12+12=24%

+ <96 hours: 16+24=40%

« PAs more than 4 days late will not be accepted

Example:

« PA worths 100 points, work late by 24 hours and 10 mins
« if no free late days left: 12 points late penalty
« if 1 free late day left: 8 points late penalty
« turning in HW after lecture has started is considered one day late

Grading Policy

Re-grade:

« within 5 working days (except Final Exam, same day)
« written request

+ whole work will be re-graded

Late days:
« 4 free late days in total for all programming

assignments together
« including weekends
» NOT per assignment

* no need to inform us to use any of your free late days
- keep track of your own free late day usage

Help with PAs stops 2 days before due date

